ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Drögemöller, Britt I."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Common variation near IRF6 is associated with IFN-β-induced liver injury in multiple sclerosis
    (Springer Nature, 2018-08) Kowalec, Kaarina; Wright, Galen E.B.; Drögemöller, Britt I.; Aminkeng, Folefac; Bhavsar, Amit P.; Kingwell, Elaine; Yoshida, Eric M.; Traboulsee, Anthony; Marrie, Ruth Ann; Kremenchutzky, Marcelo; Campbell, Trudy L.; Duquette, Pierre; Chalasani, Naga; Wadelius, Mia; Hallberg, Pär; Xia, Zongqi; Jager, Philip L. De; Denny, Joshua C.; Davis, Mary F.; Ross, Colin J.D.; Tremlett, Helen; Carleton, Bruce C.; Medicine, School of Medicine
    Multiple sclerosis (MS) is a disease of the central nervous system treated with disease-modifying therapies, including the biologic, interferon-β (IFN-β). Up to 60% of IFN-β-exposed MS patients develop abnormal biochemical liver test results1,2, and 1 in 50 experiences drug-induced liver injury3. Since genomic variation contributes to other forms of drug-induced liver injury4,5, we aimed to identify biomarkers of IFN-β-induced liver injury using a two-stage genome-wide association study. The rs2205986 variant, previously linked to differential expression of IRF6, surpassed genome-wide significance in the combined two-stage analysis (P = 2.3 × 10-8, odds ratio = 8.3, 95% confidence interval = 3.6-19.2). Analysis of an independent cohort of IFN-β-treated MS patients identified via electronic medical records showed that rs2205986 was also associated with increased peak levels of aspartate aminotransferase (P = 7.6 × 10-5) and alkaline phosphatase (P = 4.9 × 10-4). We show that these findings may be applicable to predicting IFN-β-induced liver injury, offering insight into its safer use.
  • Loading...
    Thumbnail Image
    Item
    PharmVar GeneFocus: CYP3A5
    (Wiley, 2022) Rodriguez-Antona, Cristina; Savieo, Jessica L.; Lauschke, Volker M.; Sangkuhl, Katrin; Drögemöller, Britt I.; Wang, Danxin; van Schaik, Ron H. N.; Gilep, Andrei A.; Prakasam Peter, Arul; Boone, Erin C.; Ramey, Bronwyn E.; Klein, Teri E.; Whirl-Carrillo, Michelle; Pratt, Victoria M.; Gaedigk, Andrea; Medicine, School of Medicine
    The Pharmacogene Variation Consortium (PharmVar) catalogs star (*) allele nomenclature for the polymorphic human CYP3A5 gene. Genetic variation within the CYP3A5 gene locus impacts the metabolism of several clinically important drugs, including the immunosuppressants tacrolimus, sirolimus, cyclosporine, and the benzodiazepine midazolam. Variable CYP3A5 activity is of clinical importance regarding tacrolimus metabolism. This GeneFocus provides a CYP3A5 gene summary with a focus on aspects regarding standardized nomenclature. In addition, this review also summarizes recent changes and updates, including the retirement of several allelic variants and provides an overview of how PharmVar CYP3A5 star allele nomenclature is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
  • Loading...
    Thumbnail Image
    Item
    PharmVar GeneFocus: CYP3A5
    (ASCPT, 2022-12) Rodriguez-Antona, Cristina; Savieo, Jessica L.; Lauschke, Volker M.; Sangkuhl, Katrin; Drögemöller, Britt I.; Wang, Danxin; van Schaik, Ron H. N.; Gilep, Andrei A.; Peter, Arul P.; Boone, Erin C.; Ramey, Bronwyn E.; Klein, Teri E.; Whirl-Carrillo, Michelle; Pratt, Victoria M.; Gaedigk, Andrea; Medicine, School of Medicine
    The Pharmacogene Variation Consortium (PharmVar) catalogs star (*) allele nomenclature for the polymorphic human CYP3A5 gene. Genetic variation within the CYP3A5 gene locus impacts the metabolism of several clinically important drugs, including the immunosuppressants tacrolimus, sirolimus, cyclosporine, and the benzodiazepine midazolam. Variable CYP3A5 activity is of clinical importance regarding tacrolimus metabolism. This GeneFocus provides a CYP3A5 gene summary with a focus on aspects regarding standardized nomenclature. In addition, this review also summarizes recent changes and updates including the retirement of several allelic variants and provides an overview of how PharmVar CYP3A5 star allele nomenclature is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
  • Loading...
    Thumbnail Image
    Item
    Transcriptome-wide association study uncovers the role of essential genes in anthracycline-induced cardiotoxicity
    (Springer Nature, 2021-05-21) Scott, Erika N.; Wright, Galen E. B.; Drögemöller, Britt I.; Hasbullah, Jafar S.; Gunaretnam, Erandika P.; Miao, Fudan; Bhavsar, Amit P.; Shen, Fei; Schneider, Bryan P.; Carleton, Bruce C.; Ross, Colin J. D.; Medicine, School of Medicine
    Anthracyclines are highly effective chemotherapeutic agents; however, their clinical utility is limited by severe anthracycline-induced cardiotoxicity (ACT). Genome-wide association studies (GWAS) have uncovered several genetic variants associated with ACT, but the impact of these findings requires further elucidation. We conducted a transcriptome-wide association study (TWAS) using our previous GWAS summary statistics (n = 280 patients) to identify gene expression-related associations with ACT. We identified a genetic association between decreased expression of GDF5 and ACT (Z-score = −4.30, P = 1.70 × 10−5), which was replicated in an independent cohort (n = 845 patients, P = 3.54 × 10−3). Additionally, cell viability of GDF5-silenced human cardiac myocytes was significantly decreased in response to anthracycline treatment. Subsequent gene set enrichment and pathway analyses of the TWAS data revealed that genes essential for survival, cardioprotection and response to anthracyclines, as well as genes involved in ribosomal, spliceosomal and cardiomyopathy pathways are important for the development of ACT.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University