- Browse by Author
Browsing by Author "Dorr, David A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Developing real‐world evidence from real‐world data: Transforming raw data into analytical datasets(Wiley, 2021-10-14) Bastarache, Lisa; Brown, Jeffrey S.; Cimino, James J.; Dorr, David A.; Embi, Peter J.; Payne, Philip R. O.; Wilcox, Adam B.; Weiner, Mark G.; Medicine, School of MedicineDevelopment of evidence-based practice requires practice-based evidence, which can be acquired through analysis of real-world data from electronic health records (EHRs). The EHR contains volumes of information about patients-physical measurements, diagnoses, exposures, and markers of health behavior-that can be used to create algorithms for risk stratification or to gain insight into associations between exposures, interventions, and outcomes. But to transform real-world data into reliable real-world evidence, one must not only choose the correct analytical methods but also have an understanding of the quality, detail, provenance, and organization of the underlying source data and address the differences in these characteristics across sites when conducting analyses that span institutions. This manuscript explores the idiosyncrasies inherent in the capture, formatting, and standardization of EHR data and discusses the clinical domain and informatics competencies required to transform the raw clinical, real-world data into high-quality, fit-for-purpose analytical data sets used to generate real-world evidence.Item Health information technology to improve care for people with multiple chronic conditions(Wiley, 2021) Samal, Lipika; Fu, Helen N.; Camara, Djibril S.; Wang, Jing; Bierman, Arlene S.; Dorr, David A.; Epidemiology, Richard M. Fairbanks School of Public HealthObjective: To review evidence regarding the use of Health Information Technology (health IT) interventions aimed at improving care for people living with multiple chronic conditions (PLWMCC) in order to identify critical knowledge gaps. Data sources: We searched MEDLINE, CINAHL, PsycINFO, EMBASE, Compendex, and IEEE Xplore databases for studies published in English between 2010 and 2020. Study design: We identified studies of health IT interventions for PLWMCC across three domains as follows: self-management support, care coordination, and algorithms to support clinical decision making. Data collection/extraction methods: Structured search queries were created and validated. Abstracts were reviewed iteratively to refine inclusion and exclusion criteria. The search was supplemented by manually searching the bibliographic sections of the included studies. The search included a forward citation search of studies nested within a clinical trial to identify the clinical trial protocol and published clinical trial results. Data were extracted independently by two reviewers. Principal findings: The search yielded 1907 articles; 44 were included. Nine randomized controlled trials (RCTs) and 35 other studies including quasi-experimental, usability, feasibility, qualitative studies, or development/validation studies of analytic models were included. Five RCTs had positive results, and the remaining four RCTs showed that the interventions had no effect. The studies address individual patient engagement and assess patient-centered outcomes such as quality of life. Few RCTs assess outcomes such as disability and none assess mortality. Conclusions: Despite a growing body of literature on health IT interventions or multicomponent interventions including a health IT component for chronic disease management, current evidence for applying health IT solutions to improve care for PLWMCC is limited. The body of literature included in this review provides critical information on the state of the science as well as the many gaps that need to be filled for digital health to fulfill its promise in supporting care delivery that meets the needs of PLWMCC.Item Unmet information needs of clinical teams delivering care to complex patients and design strategies to address those needs(Oxford University Press, 2020-05-01) Cohen, Deborah J.; Wyte-Lake, Tamar; Dorr, David A.; Gold, Rachel; Holden, Richard J.; Koopman, Richelle J.; Colasurdo, Joshua; Warren, Nathaniel; Medicine, School of MedicineObjectives: To identify the unmet information needs of clinical teams delivering care to patients with complex medical, social, and economic needs; and to propose principles for redesigning electronic health records (EHR) to address these needs. Materials and methods: In this observational study, we interviewed and observed care teams in 9 community health centers in Oregon and Washington to understand their use of the EHR when caring for patients with complex medical and socioeconomic needs. Data were analyzed using a comparative approach to identify EHR users' information needs, which were then used to produce EHR design principles. Results: Analyses of > 300 hours of observations and 51 interviews identified 4 major categories of information needs related to: consistency of social determinants of health (SDH) documentation; SDH information prioritization and changes to this prioritization; initiation and follow-up of community resource referrals; and timely communication of SDH information. Within these categories were 10 unmet information needs to be addressed by EHR designers. We propose the following EHR design principles to address these needs: enhance the flexibility of EHR documentation workflows; expand the ability to exchange information within teams and between systems; balance innovation and standardization of health information technology systems; organize and simplify information displays; and prioritize and reduce information. Conclusion: Developing EHR tools that are simple, accessible, easy to use, and able to be updated by a range of professionals is critical. The identified information needs and design principles should inform developers and implementers working in community health centers and other settings where complex patients receive care.Item Use of Electronic Health Records to Support a Public Health Response to the COVID-19 Pandemic in the United States: A Perspective from Fifteen Academic Medical Centers(Oxford University Press, 2020-11-03) Madhavan, Subha; Bastarache, Lisa; Brown, Jeffrey S.; Dorr, David A.; Embi, Peter J.; Friedman, Charles P.; Johnson, Kevin B.; Moore, Jason H.; Kohane, Isaac S.; Payne, Philip R.O.; Tenenbaum, Jessica D.; Weiner, Mark G.; Wilcox, Adam B.; Ohno-Machado, Lucila; Butte, Atul J.; Medicine, School of MedicineOur goal is to summarize the collective experience of 15 organizations in dealing with uncoordinated efforts that result in unnecessary delays in understanding, predicting, preparing for, containing, and mitigating the COVID-19 pandemic in the US. Response efforts involve the collection and analysis of data corresponding to healthcare organizations, public health departments, socioeconomic indicators, as well as additional signals collected directly from individuals and communities. We focused on electronic health record (EHR) data, since EHRs can be leveraged and scaled to improve clinical care, research, and to inform public health decision-making. We outline the current challenges in the data ecosystem and the technology infrastructure that are relevant to COVID-19, as witnessed in our 15 institutions. The infrastructure includes registries and clinical data networks to support population-level analyses. We propose a specific set of strategic next steps to increase interoperability, overall organization, and efficiencies