- Browse by Author
Browsing by Author "Dorame, Angie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dissecting the role of the CRMP2–neurofibromin complex on pain behaviors(Wolters Kluwer, 2017-11) Moutal, Aubin; Wang, Yue; Yang, Xiaofang; Ji, Yingshi; Luo, Shizhen; Dorame, Angie; Bellampalli, Shreya S.; Chew, Lindsey A.; Cai, Song; Dustrude, Erik T.; Keener, James E.; Marty, Michael T.; Vanderah, Todd W.; Khanna, Rajesh; Psychiatry, School of MedicineNeurofibromatosis type 1 (NF1), a genetic disorder linked to inactivating mutations or a homozygous deletion of the Nf1 gene, is characterized by tumorigenesis, cognitive dysfunction, seizures, migraine, and pain. Omic studies on human NF1 tissues identified an increase in the expression of collapsin response mediator protein 2 (CRMP2), a cytosolic protein reported to regulate the trafficking and activity of presynaptic N-type voltage-gated calcium (Cav2.2) channels. Because neurofibromin, the protein product of the Nf1 gene, binds to and inhibits CRMP2, the neurofibromin-CRMP2 signaling cascade will likely affect Ca channel activity and regulate nociceptive neurotransmission and in vivo responses to noxious stimulation. Here, we investigated the function of neurofibromin-CRMP2 interaction on Cav2.2. Mapping of >275 peptides between neurofibromin and CRMP2 identified a 15-amino acid CRMP2-derived peptide that, when fused to the tat transduction domain of HIV-1, inhibited Ca influx in dorsal root ganglion neurons. This peptide mimics the negative regulation of CRMP2 activity by neurofibromin. Neurons treated with tat-CRMP2/neurofibromin regulating peptide 1 (t-CNRP1) exhibited a decreased Cav2.2 membrane localization, and uncoupling of neurofibromin-CRMP2 and CRMP2-Cav2.2 interactions. Proteomic analysis of a nanodisc-solubilized membrane protein library identified syntaxin 1A as a novel CRMP2-binding protein whose interaction with CRMP2 was strengthened in neurofibromin-depleted cells and reduced by t-CNRP1. Stimulus-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices was inhibited by t-CNRP1. Intrathecal administration of t-CNRP1 was antinociceptive in experimental models of inflammatory, postsurgical, and neuropathic pain. Our results demonstrate the utility of t-CNRP1 to inhibit CRMP2 protein-protein interactions for the potential treatment of pain.Item Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain(Lippincott, Williams & Wilkins, 2018-10) François-Moutal, Liberty; Dustrude, Erik T.; Wang, Yue; Brustovetsky, Tatiana; Dorame, Angie; Ju, Weina; Moutal, Aubin; Perez-Miller, Samantha; Brustovetsky, Nickolay; Gokhale, Vijay; Khanna, May; Khanna, Rajesh; Pharmacology and Toxicology, School of MedicineWe previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.7 currents. Microscale thermophoresis and amplified luminescent proximity homogeneous alpha assay revealed a low micromolar binding affinity between CRMP2 and Ubc9. A heptamer peptide harboring CRMP2's SUMO motif, also bound with similar affinity to Ubc9, disrupted the CRMP2-Ubc9 interaction in a concentration-dependent manner. Importantly, incubation of a tat-conjugated cell-penetrating peptide (t-CSM) decreased sodium currents, predominantly NaV1.7, in a model neuronal cell line. Dialysis of t-CSM peptide reduced CRMP2 SUMOylation and blocked surface trafficking of NaV1.7 in rat sensory neurons. Fluorescence dye-based imaging in rat sensory neurons demonstrated inhibition of sodium influx in the presence of t-CSM peptide; by contrast, calcium influx was unaffected. Finally, t-CSM effectively reversed persistent mechanical and thermal hypersensitivity induced by a spinal nerve injury, a model of neuropathic pain. Structural modeling has now identified a pocket-harboring CRMP2's SUMOylation motif that, when targeted through computational screening of ligands/molecules, is expected to identify small molecules that will biochemically and functionally target CRMP2's SUMOylation to reduce NaV1.7 currents and reverse neuropathic pain.