- Browse by Author
Browsing by Author "Donneyong, Macarius"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A multistate transition model for statin‐induced myopathy and statin discontinuation(Wiley, 2021) Zhu, Yuxi; Chiang, Chien-Wei; Wang, Lei; Brock, Guy; Milks, M. Wesley; Cao, Weidan; Zhang, Pengyue; Zeng, Donglin; Donneyong, Macarius; Li, Lang; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthThe overarching goal of this study was to simultaneously model the dynamic relationships among statin exposure, statin discontinuation, and potentially statin-related myopathic outcomes. We extracted data from the Indiana Network of Patient Care for 134,815 patients who received statin therapy between January 4, 2004, and December 31, 2008. All individuals began statin treatment, some discontinued statin use, and some experienced myopathy and/or rhabdomyolysis while taking the drug or after discontinuation. We developed a militate model to characterize 12 transition probabilities among six different states defined by use or discontinuation of statin and its associated myopathy or rhabdomyolysis. We found that discontinuation of statin therapy was common and frequently early, with 44.4% of patients discontinuing therapy after 1 month, and discontinuation is a strong indicator for statin-induced myopathy (risk ratio, 10.8; p < 0.05). Women more likely than men (p < 0.05) and patients aged 65 years and older had a higher risk than those aged younger than 65 years to discontinue statin use or experience myopathy. In conclusion, we introduce an innovative multistate model that allows clear depiction of the relationship between statin discontinuation and statin-induced myopathy. For the first time, we have successfully demonstrated and quantified the relative risk of myopathy between patients who continued and discontinued statin therapy. Age and sex were two strong risk factors for both statin discontinuation and incident myopathy.Item The Concurrent Initiation of Medications Is Associated with Discontinuation of Buprenorphine Treatment for Opioid Use Disorder(medRxiv, 2020) Zhang, Pengyue; Chiang, Chien-Wei; Quinney, Sara; Donneyong, Macarius; Lu, Bo; Huang, Lei Frank; Cheng, Feixiong; Obstetrics and Gynecology, School of MedicineIntroduction Retention in buprenorphine treatment for opioid use disorder (OUD) yields better opioid abstinence and reduces all-cause mortality for patients with OUD. Despite significant efforts have been made to expand the availability and use of buprenorphine in the United States, its retention rates remain on a low level. The current study examines discontinuation of buprenorphine with respect to concurrent initiation of other medications using real-world evidence. Methods Case-crossover study was conducted to examine discontinuation of buprenorphine using a large-scale longitudinal health dataset including 148,306 commercially-insured individuals initiated on medications for opioid use disorder (MOUD). Odds ratios and Bonferroni adjusted p-values were calculated for medications and therapeutic classes of medications. Results Clonidine was associated with increased discontinuation risk of buprenorphine both using the buprenorphine dataset alone (OR = 1.583 and adjusted p-value = 1.22 × 10−6) and using naltrexone as a comparison drug (OR = 2.706 and adjusted p-value = 4.11 × 10−5). Opioid medications (oxycodone, morphine and fentanyl) and methocarbamol were associated with increased discontinuation risk of buprenorphine using the buprenorphine dataset alone (adjusted p-value < 0.05), but not significant using naltrexone as a comparison drug. 6 drug therapeutic classes were associated with increased discontinuation risk of buprenorphine both using the buprenorphine dataset alone and using naltrexone as a comparison drug (adjusted p-value < 0.05). Conclusion Concurrent initiation of medications is associated with increased discontinuation risk of buprenorphine. Opioid medications are prescribed among patients on MOUD and associated with increased discontinuation risk of buprenorphine. Analgesics is associated with increased discontinuation risk of buprenorphine for patients without previous exposure of pain medications.Item Random control selection for conducting high-throughput adverse drug events screening using large-scale longitudinal health data(Wiley, 2021-09) Chiang, Chien-Wei; Zhang, Penyue; Donneyong, Macarius; Chen, You; Su, Yu; Li, Lang; Biostatistics, School of Public HealthCase-control design based high-throughput pharmacoinformatics study using large-scale longitudinal health data is able to detect new adverse drug event (ADEs) signals. Existing control selection approaches for case-control design included the dynamic/super control selection approach. The dynamic/super control selection approach requires all individuals to be evaluated at all ADE case index dates, as the individuals' eligibilities as control depend on ADE/enrollment history. Thus, using large-scale longitudinal health data, the dynamic/super control selection approach requires extraordinarily high computational time. We proposed a random control selection approach in which ADE case index dates were matched by randomly generated control index dates. The random control selection approach does not depend on ADE/enrollment history. It is able to significantly reduce computational time to prepare case-control data sets, as it requires all individuals to be evaluated only once. We compared the performance metrics of all control selection approaches using two large-scale longitudinal health data and a drug-ADE gold standard including 399 drug-ADE pairs. The F-scores for the random control selection approach were between 0.586 and 0.600 compared to between 0.545 and 0.562 for dynamic/super control selection approaches. The random control selection approach was ~ 1000 times faster than dynamic/super control selection approach on preparing case-control data sets. With large-scale longitudinal health data, a case-control design-based pharmacoinformatics study using random control selection is able to generate comparable ADE signals than the existing control selection approaches. The random control selection approach also significantly reduces computational time to prepare the case-control data sets.