- Browse by Author
Browsing by Author "Dong, Yuanshu"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Phosphatase of regenerating liver 2 (PRL2) deficiency impairs Kit signaling and spermatogenesis(ASBMB, 2014-02-07) Dong, Yuanshu; Zhang, Lujuan; Bai, Yunpeng; Zhou, Hong-Ming; Campbell, Amanda M.; Chen, Hanying; Yong, Weidong; Zhang, Wenjun; Zeng, Qi; Shou, Weinian; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicineThe Phosphatase of Regenerating Liver (PRL) proteins promote cell signaling and are oncogenic when overexpressed. However, our understanding of PRL function came primarily from studies with cultured cell lines aberrantly or ectopically expressing PRLs. To define the physiological roles of the PRLs, we generated PRL2 knock-out mice to study the effects of PRL deletion in a genetically controlled, organismal model. PRL2-deficient male mice exhibit testicular hypotrophy and impaired spermatogenesis, leading to decreased reproductive capacity. Mechanistically, PRL2 deficiency results in elevated PTEN level in the testis, which attenuates the Kit-PI3K-Akt pathway, resulting in increased germ cell apoptosis. Conversely, increased PRL2 expression in GC-1 cells reduces PTEN level and promotes Akt activation. Our analyses of PRL2-deficient animals suggest that PRL2 is required for spermatogenesis during testis development. The study also reveals that PRL2 promotes Kit-mediated PI3K/Akt signaling by reducing the level of PTEN that normally antagonizes the pathway. Given the strong cancer susceptibility to subtle variations in PTEN level, the ability of PRL2 to repress PTEN expression qualifies it as an oncogene and a novel target for developing anti-cancer agents.Item PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal(Wiley, 2014-07) Kobayashi, Michihiro; Bai, Yunpeng; Dong, Yuanshu; Yu, Hao; Chen, Sisi; Gao, Rui; Zhang, Lujuan; Yoder, Mervin C.; Kapur, Reuben; Zhang, Zhong-Yin; Liu, Yan; Department of Pediatrics, Indiana University School of MedicineHematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in HSCs is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family (aka PRL [phosphatase of regenerating liver] phosphatases), consisting of PTP4A1/PRL1, PTP4A2/PRL2, and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self-renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling. Importantly, we discovered that the ability of PTP4A2 to enhance HSPC proliferation and activation of AKT and ERK signaling depends on its phosphatase activity. Furthermore, we found that PTP4A2 is important for SCF-mediated HSPC proliferation and loss of Ptp4a2 decreased the ability of oncogenic KIT/D814V mutant in promoting hematopoietic progenitor cell proliferation. Thus, PTP4A2 plays critical roles in regulating HSC self-renewal and mediating SCF/KIT signaling.Item Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors(Wiley, 2017-04) Kobayashi, Michihiro; Nabinger, Sarah; Bai, Yunpeng; Yoshimoto, Momoko; Gao, Rui; Chen, Sisi; Yao, Chonghua; Dong, Yuanshu; Zhang, Lujuan; Rodriguez, Sonia; Yashiro- Ohtan, Yumi; Pear, Warren S.; Carlesso, Nadia; Yoder, Mervin C.; Kapur, Reuben; Kaplan, Mark H.; Lacorazza, H. Daniel; Zhang, Zhong-Yin; Liu, Yan; Pediatrics, School of MedicineThe molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors.Item Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis(SpringerNature, 2016-09-26) Bai, Yunpeng; Zhou, Hong-Ming; Zhang, Lujuan; Dong, Yuanshu; Zeng, Qi; Shou, Weinian; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicineThe PRL phosphatases are oncogenic when overexpressed but their in vivo biological function is less well understood. Previous gene deletion study revealed a role for PRL2 in spermatogenesis. We report here the first knockout mice lacking PRL1, the most related homolog of PRL2. We found that loss of PRL1 does not affect spermatogenesis and reproductive ability of male mice, likely due to functional compensation by the relatively higher expression of PRL2 in the testes. However, PRL1-/-/PRL2+/- male mice show testicular atrophy phenotype similar to PRL2-/- mice. More strikingly, deletion of one PRL1 allele in PRL2-/- male mice causes complete infertility. Mechanistically, the total level of PRL1 and PRL2 is negatively correlated with the PTEN protein level in the testis and PRL1+/-/PRL2-/- mice have the highest level of PTEN, leading to attenuated Akt activation and increased germ cell apoptosis, effectively halting spermatozoa production. These results provide the first evidence that in addition to PRL2, PRL1 is also required for spermatogenesis by downregulating PTEN and promoting Akt signaling. The ability of the PRLs to suppress PTEN expression underscores the biochemical basis for their oncogenic potential.