ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dodge, Todd R."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effects of salubrinal on development of osteoclasts and osteoblasts from bone marrow-derived cells
    (Springer Nature, 2013-07-01) Yokota, Hiroki; Hamamura, Kazunori; Chen, Andy; Dodge, Todd R.; Tanjung, Nancy; Abedinpoor, Aysan; Zhang, Ping; Anatomy, Cell Biology and Physiology, School of Medicine
    Background: Osteoporosis is a skeletal disease leading to an increased risk of bone fracture. Using a mouse osteoporosis model induced by administration of a receptor activator of nuclear factor kappa-B ligand (RANKL), salubrinal was recently reported as a potential therapeutic agent. To evaluate the role of salubrinal in cellular fates as well as migratory and adhesive functions of osteoclast/osteoblast precursors, we examined the development of primary bone marrow-derived cells in the presence and absence of salubrinal. We addressed a question: are salubrinal's actions more potent to the cells isolated from the osteoporotic mice than those isolated from the control mice? Methods: Using the RANKL-injected and control mice, bone marrow-derived cells were harvested. Osteoclastogenesis was induced by macrophage-colony stimulating factor and RANKL, while osteoblastogenesis was driven by dexamethasone, ascorbic acid, and β-glycerophosphate. Results: The results revealed that salubrinal suppressed the numbers of colony forming-unit (CFU)-granulocyte/macrophages and CFU-macrophages, as well as formation of mature osteoclasts in a dosage-dependent manner. Salubrinal also suppressed migration and adhesion of pre-osteoclasts and increased the number of CFU-osteoblasts. Salubrinal was more effective in exerting its effects in the cells isolated from the RANKL-injected mice than the control. Consistent with cellular fates and functions, salubrinal reduced the expression of nuclear factor of activated T cells c1 (NFATc1) as well as tartrate-resistant acid phosphatase. Conclusions: The results support the notion that salubrinal exhibits significant inhibition of osteoclastogenesis as well as stimulation of osteoblastogenesis in bone marrow-derived cells, and its efficacy is enhanced in the cells harvested from the osteoporotic bone samples.
  • Loading...
    Thumbnail Image
    Item
    Knee loading reduces MMP13 activity in the mouse cartilage
    (Springer Nature, 2013-11-01) Hamamura, Kazunori; Zhang, Ping; Zhao, Liming; Shim, Joon W.; Chen, Andy; Dodge, Todd R.; Wan, Qiaoqiao; Shih, Han; Na, Sungsoo; Lin, Chien-Chi; Sun, Hui Bin; Yokota, Hiroki; Anatomy, Cell Biology and Physiology, School of Medicine
    Background: Moderate loads with knee loading enhance bone formation, but its effects on the maintenance of the knee are not well understood. In this study, we examined the effects of knee loading on the activity of matrix metalloproteinase13 (MMP13) and evaluated the role of p38 MAPK and Rac1 GTPase in the regulation of MMP13. Methods: Knee loading (0.5-3 N for 5 min) was applied to the right knee of surgically-induced osteoarthritis (OA) mice as well as normal (non-OA) mice, and MMP13 activity in the femoral cartilage was examined. The sham-loaded knee was used as a non-loading control. We also employed primary non-OA and OA human chondrocytes as well as C28/I2 chondrocyte cells, and examined MMP13 activity and molecular signaling in response to shear at 2-20 dyn/cm². Results: Daily knee loading at 1 N for 2 weeks suppressed cartilage destruction in the knee of OA mice. Induction of OA elevated MMP13 activity and knee loading at 1 N suppressed this elevation. MMP13 activity was also increased in primary OA chondrocytes, and this increase was attenuated by applying shear at 10 dyn/cm². Load-driven reduction in MMP13 was associated with a decrease in the phosphorylation level of p38 MAPK (p-p38) and NFκB (p-NFκB). Molecular imaging using a fluorescence resonance energy transfer (FRET) technique showed that Rac1 activity was reduced by shear at 10 dyn/cm² and elevated by it at 20 dyn/cm². Silencing Rac1 GTPase significantly reduced MMP13 expression and p-p38 but not p-NFκB. Transfection of a constitutively active Rac1 GTPase mutant increased MMP13 activity, while a dominant negative mutant decreased it. Conclusions: Knee loading reduces MMP13 activity at least in part through Rac1-mediated p38 MAPK signaling. This study suggests the possibility of knee loading as a therapy not only for strengthening bone but also preventing tissue degradation of the femoral cartilage.
  • Loading...
    Thumbnail Image
    Item
    Physical Weight Loading Induces Expression of Tryptophan Hydroxylase 2 in the Brain Stem
    (2014-01) Shim, Joon W.; Dodge, Todd R.; Hammond, Max A.; Wallace, Joseph M.; Zhou, Feng C.; Yokota, Hiroki
    Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University