- Browse by Author
Browsing by Author "Dodge, Todd"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading(ASME, 2013-12) Fitzwater, Daric; Dodge, Todd; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel; Mechanical Engineering, School of Engineering and TechnologyJoint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.Item Resonance in the mouse tibia as a predictor of frequencies and locations of loading-induced bone formation(Springer, 2014-01) Zhao, Liming; Dodge, Todd; Nemani, Arun; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyTo enhance new bone formation for the treating of patients with osteopenia and osteoporosis, various mechanical loading regimens have been developed. Although a wide spectrum of loading frequencies is proposed in those regimens, a potential linkage between loading frequencies and locations of loading-induced bone formation is not well understood. In this study, we addressed a question: Does mechanical resonance play a role in frequency-dependent bone formation? If so, can the locations of enhanced bone formation be predicted through the modes of vibration? Our hypothesis is that mechanical loads applied at a frequency near the resonant frequencies enhance bone formation, specifically in areas that experience high principal strains. To test the hypothesis, we conducted axial tibia loading using low, medium, or high frequency to the mouse tibia, as well as finite element analysis. The experimental data demonstrated dependence of the maximum bone formation on location and frequency of loading. Samples loaded with the low-frequency waveform exhibited peak enhancement of bone formation in the proximal tibia, while the high-frequency waveform offered the greatest enhancement in the midshaft and distal sections. Furthermore, the observed dependence on loading frequencies was correlated to the principal strains in the first five resonance modes at 8.0-42.9 Hz. Collectively, the results suggest that resonance is a contributor to the frequencies and locations of maximum bone formation. Further investigation of the observed effects of resonance may lead to the prescribing of personalized mechanical loading treatments.Item ROLE OF OSTEOCLASTS IN THE BIOCORROSION OF METAL IMPLANTS(Office of the Vice Chancellor for Research, 2011-04-08) Theriac, Haili; Dodge, Todd; Largura, Heather; Hara, A.; Liu, S.; Bruzzaniti, AngelaMini implants (MIs), typically composed of stainless steel (SS) or titanium alloy (Ti), have recently emerged as superior alternatives to traditional dental and orthopedic implants. When a metal implant is inserted into bone, a process called bone remodeling is triggered near the implant. Bone remodeling involves the activity of osteoblasts (OBs), which produce new bone tissue, and osteoclasts (OCs), which degrade and digest bone. OCs degrade bone by acidifying the extracellular environment and secreting hydrolytic enzymes that degrade the extracellular matrix. However, the acidification of the extracellular environment can potentially lead to the biological corrosion of metal implants after implantation. This may have important consequences such as cell toxicity, decreased osseointegration of the implant, and implant loosening. The objective of this study is to determine if implants made from Ti are more resistant to OC-mediated biocorrosion than stainless steel (SS) implants. We hypothesize that biocorrosive activity by OCs will be greater on SS than titanium. To assess the biocorrosive effects of OCs on SS and Ti, the top face of 150 µm thick sections of each metal were scanned using a Proscan 2000 Scantron to provide accurate three dimensional surface measurements of the metals before introduction of OCs. OC precursors were isolated from the bone marrow of C57/bl6 mice and differentiated with macrophage colony stimulating factor and receptor activator of NF-kappaB ligand for 7 days in the presence of either SS or Ti metals. The metals discs were then removed and rescanned with the Proscan Scantron and changes in the surface measurements before and after OC growth was calculated. OCs were fixed and stained for tartrate-resistant acid phosphatase, a marker of mature OCs, and counted. Our preliminary findings revealed that the surface roughness of SS was reduced to a greater extent than Ti metals. OC number was also reduced in cultures containing SS compared with Ti. These findings suggest SS may be more susceptible to OC-mediated biocorrosion than Ti-based metal implants. Although the physiological implications are unclear, we speculate that sustained corrosion of SS can negatively affect the long-term stability of implants in vivo.