ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Diggins, Nicklaus H."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing
    (Elsevier, 2020-02) Sun, Seungyup; Diggins, Nicklaus H.; Gunderson, Zachary J.; Fehrenbacher, Jill C.; White, Fletcher A.; Kacena, Melissa A.; Orthopaedic Surgery, School of Medicine
    Neuropeptides and neurotrophins are key regulators of peripheral nociceptive nerves and contribute to the induction, sensitization, and maintenance of pain. It is now known that these peptides also regulate non-neuronal tissues, including bone. Here, we review the effects of numerous neuropeptides and neurotrophins on fracture healing. The neuropeptides calcitonin-gene related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) have varying effects on osteoclastic and osteoblastic activity. Ultimately, CGRP and SP both accelerate fracture healing, while VIP and PACAP seem to negatively impact healing. Unlike the aforementioned neuropeptides, the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have more uniform effects. Both factors upregulate osteoblastic activity, osteoclastic activity, and, in vivo, stimulate osteogenesis to promote fracture healing. Future research will need to clarify the exact mechanism by which the neuropeptides and neurotrophins influence fracture healing. Specifically, understanding the optimal expression patterns for these proteins in the fracture healing process may lead to therapies that can maximize their bone-healing capabilities and minimize their pain-promoting effects. Finally, further examination of protein-sequestering antibodies and/or small molecule agonists and antagonists may lead to new therapies that can decrease the rate of delayed union/nonunion outcomes and fracture-associated pain.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University