- Browse by Author
Browsing by Author "Dietrich, Amy D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Psychosocial impairment following mild blast-induced traumatic brain injury in rats(Elsevier, 2021) Race, Nicholas S.; Andrews, Katharine D.; Lungwitz, Elizabeth A.; Vega Alvarez, Sasha M.; Warner, Timothy R.; Acosta, Glen; Cao, Jiayue; Lu, Kun-Han; Liu, Zhongming; Dietrich, Amy D.; Majumdar, Sreeparna; Shekhar, Anantha; Truitt, William A.; Shi, Riyi; Anatomy, Cell Biology and Physiology, School of MedicineTraumatic brain injury (TBI) is associated with increased risk for mental health disorders, impacting post-injury quality of life and societal reintegration. TBI is also associated with deficits in psychosocial processing, defined as the cognitive integration of social and emotional behaviors, however little is known about how these deficits manifest and their contributions to post-TBI mental health. In this pre-clinical investigation using rats, a single mild blast TBI (mbTBI) induced impairment of psychosocial processing in the absence of confounding physical polytrauma, post-injury motor deficits, affective abnormalities, or deficits in non-social behavior. Impairment severity correlated with acute upregulations of a known oxidative stress metabolite, 3-hydroxypropylmercapturic acid (3-HPMA), in urine. Resting state fMRI alterations in the acute post-injury period implicated key brain regions known to regulate psychosocial behavior, including orbitofrontal cortex (OFC), which is congruent with our previous report of elevated acrolein, a marker of neurotrauma and 3-HPMA precursor, in this region following mbTBI. OFC of mbTBI-exposed rats demonstrated elevated mRNA expression of metabotropic glutamate receptors 1 and 5 (mGluR1/5) and injection of mGluR1/5-selective agonist in OFC of uninjured rats approximated mbTBI-induced psychosocial processing impairment, demonstrating a novel role for OFC in this psychosocial behavior. Furthermore, OFC may serve as a hotspot for TBI-induced disruption of psychosocial processing and subsequent mental health disorders.Item Role of Basolateral Amygdalar Somatostatin 2 Receptors in a Rat Model of Chronic Anxiety(Elsevier, 2021) Gaskins, Denise L.; Burke, Andrew R.; Sajdyk, Tammy J.; Truitt, William A.; Dietrich, Amy D.; Shekhar, Anantha; Anatomy, Cell Biology and Physiology, School of MedicineRepeated exposure to stress has been implicated in inducing chronic anxiety states. Stress related increases in anxiety responses are likely mediated by activation of corticotropin-releasing factor receptors (CRFR) in the amygdala, particularly the basolateral amygdala (BLA). Within the BLA, acute injections of the CRFR agonist urocortin 1 (Ucn1) leads to acute anxiety, whereas repeated daily injections of subthreshold-doses of Ucn1 produces a long-lasting, persistent anxiety-like phenotype, a phenomenon referred to as Ucn1-priming. Relative gene expressions from the BLA of vehicle and Ucn1-primed rats were analyzed with quantitative RT-PCR using a predesigned panel of 82 neuroscience-related genes. Compared to vehicle-primed rats, only expression of the somatostatin receptor 2 gene (Sstr2) was significantly reduced in the BLA of Ucn1-primed rats. The contribution of Sstr2 on an anxiety phenotype was tested by injecting a Sstr2 antagonist into the BLA in un-primed rats. The Sstr2 antagonist increased anxiety-like behavior. Notably, pretreatment with Sstr2 agonist injected into the BLA blocked anxiety-inducing effects of acute Ucn1 BLA-injections and delayed anxiety expression during Ucn1-priming. However, concomitant Sstr2 agonist pretreatment during Ucn-1 priming did not prevent either the development of a chronic anxiety state or a reduction of BLA Sstr2 expression induced by priming. The data demonstrate that the persistent anxiety-like phenotype observed with Ucn1-priming in the BLA is associated with a selective reduction of Sstr2 gene expression. Although Sstr2 activation in the BLA blocks acute anxiogenic effects of stress and down-regulation of BLA Sstr2, it does not suppress the long-term consequences of prolonged exposure to stress-related challenges.