- Browse by Author
Browsing by Author "Dick, Gregory M."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Critical contribution of KV1 channels to the regulation of coronary blood flow(Springer, 2016-09) Goodwill, Adam G.; Noblet, Jillian N.; Sassoon, Daniel; Fu, Lijuan; Kassab, Ghassan S.; Schepers, Luke; Herring, B. Paul; Rottgen, Trey S.; Tune, Johnathan D.; Dick, Gregory M.; Cellular and Integrative Physiology, School of MedicineIon channels in smooth muscle control coronary vascular tone, but the mechanisms require further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow by using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P<0.001). Immunohistochemical staining demonstrated KV1.5 protein in the vascular smooth muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch clamp experiments demonstrated significant correolide-sensitive (1–10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n=5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3–3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P<0.05). Dobutamine (0.3–10 µg/kg/min) elicited coronary metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P<0.001). Coronary artery occlusions (15 s) elicited reactive hyperemia and correolide (3 µM) reduced the flow volume repayment by approximately 30% (P<0.05). Taken together, these data support a major role for KV1 channels in modulating baseline coronary vascular tone and perhaps vasodilation in response to increased metabolism and transient ischemia.Item Dynamic regulation of the subunit composition of BK channels in smooth muscle(American Heart Association, 2017-09-01) Dick, Gregory M.; Tune, Johnathan D.; Cellular and Integrative Physiology, School of MedicineItem KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine(American Physiological Society, 2016-03-15) Goodwill, Adam G.; Fu, Lijuan; Noblet, Jillian N.; Casalini, Eli D.; Sassoon, Daniel; Berwick, Zachary C.; Kassab, Ghassan S.; Tune, Johnathan D.; Dick, Gregory M.; Department of Cellular & Integrative Physiology, IU School of MedicineHydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli.Item Local metabolic hypothesis is not sufficient to explain coronary autoregulatory behavior(Springer Nature, 2018-08-02) Kiel, Alexander M.; Goodwill, Adam G.; Baker, Hana E.; Dick, Gregory M.; Tune, Johnathan D.; Cellular and Integrative Physiology, School of MedicineThe local metabolic hypothesis proposes that myocardial oxygen tension determines the degree of autoregulation by increasing the production of vasodilator metabolites as perfusion pressure is reduced. Thus, normal physiologic levels of coronary venous PO2, an index of myocardial oxygenation, are proposed to be required for effective autoregulation. The present study challenged this hypothesis through determination of coronary responses to changes in coronary perfusion pressure (CPP 140-40 mmHg) in open-chest swine in the absence (n = 7) and presence of euvolemic hemodilution (~ 50% reduction in hematocrit), with (n = 5) and without (n = 6) infusion of dobutamine to augment MVO2. Coronary venous PO2 decreased over similar ranges (~ 28-15 mmHg) as CPP was lowered from 140 to 40 mmHg in each of the groups. However, coronary venous PO2 was not associated with changes in coronary blood flow (r = - 0.11; P = 0.29) or autoregulatory gain (r = - 0.29; P = 0.12). Coronary zero-flow pressure (Pzf) was measured in 20 mmHg increments and determined to be directly related to vascular resistance (r = 0.71; P < 0.001). Further analysis demonstrated that changes in coronary blood flow remained minimal at Pzf > 20 mmHg, but progressively increased as Pzf decreased below this threshold value (r = 0.68; P < 0.001). Coronary Pzf was also positively correlated with autoregulatory gain (r = 0.43; P = 0.001). These findings support that coronary autoregulatory behavior is predominantly dependent on an adequate degree of underlying vasomotor tone, independent of normal myocardial oxygen tension.Item Mineralocorticoid receptor blockade normalizes coronary resistance in obese swine independent of functional alterations in Kv channels(Springer, 2021-05-20) Goodwill, Adam G.; Baker, Hana E.; Dick, Gregory M.; McCallinhart, Patricia E.; Bailey, Chastidy A.; Brown, Scott M.; Man, Joshua J.; Tharp, Darla L.; Clark, Hannah E.; Blaettner, Bianca S.; Jaffe, Iris Z.; Bowles, Douglas K.; Trask, Aaron J.; Tune, Johnathan D.; Bender, Shawn B.; Anatomy, Cell Biology and Physiology, School of MedicineImpaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity, yet underlying mechanisms and potential therapeutic strategies remain poorly understood. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Whether MR blockade improves in vivo regulation of coronary flow, a process involving voltage-dependent K+ (Kv) channel activation, or reduces coronary structural remodeling in obesity is unclear. Thus, the goals of this investigation were to determine the effects of obesity on coronary responsiveness to reductions in arterial PO2 and potential involvement of Kv channels and whether the benefit of MR blockade involves improved coronary Kv function or altered passive structural properties of the coronary microcirculation. Hypoxemia increased coronary blood flow similarly in lean and obese swine; however, baseline coronary vascular resistance was significantly higher in obese swine. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. Chronic MR inhibition in obese swine normalized baseline coronary resistance, did not influence hypoxemic coronary vasodilation, and did not restore coronary Kv function (assessed in vivo, ex vivo, and via patch clamping). Lastly, MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening.Item Regulation of Coronary Blood Flow(Wiley, 2017-03-16) Goodwill, Adam G.; Dick, Gregory M.; Kiel, Alexander M.; Tune, Johnathan D.; Cellular and Integrative Physiology, School of MedicineThe heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.