- Browse by Author
Browsing by Author "Di, Rong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Diabetes Alters Diurnal Rhythm of Electroretinogram in db/db Mice(Yale School of Medicine, 2019-06-27) Di, Rong; Luo, Qianyi; Mathew, Deepa; Bhatwadekara, Ashay D.; Ophthalmology, School of MedicineDiabetic retinopathy (DR) is the most common complications of diabetes and a leading cause of blindness in the United States. The retinal neuronal changes precede the vascular dysfunction observed in DR. The electroretinogram (ERG) determines the electrical activity of retinal neural and non-neuronal cells. The retinal ERG amplitude is reduced gradually on the progression of DR to a more severe form. Circadian rhythms play an important role in the physiological function of the body. While ERG is known to exhibit a diurnal rhythm, it is not known whether a progressive increase in the duration of diabetes affects the physiological rhythm of retinal ERG. To study this, we determined the ERG rhythm of db/db mice, an animal model of type 2 diabetes at 2, 4, and 6 months of diabetes under a regular light-dark cycle and constant dark. Our studies demonstrate that the diurnal rhythm of ERG amplitude for retinal a-wave and b-wave was altered in diabetes. The implicit time was increased in db/db mice while the oscillatory potential was reduced. Moreover, there was a progressive decline in an intrinsic rhythm of ERG upon an increase in the duration of diabetes. In conclusion, our studies provide novel insights into the pathogenic mechanism of DR by showing an altered circadian rhythm of the ERG.Item Metformin Corrects Abnormal Circadian Rhythm and Kir4.1 Channels in Diabetes(The Association for Research in Vision and Ophthalmology, 2020-06-22) Alex, Alpha; Luo, Qianyi; Mathew, Deepa; Di, Rong; Bhatwadekar, Ashay D.; Ophthalmology, School of MedicinePurpose Diabetic retinopathy (DR) is a leading cause of visual impairment. Müller cells in DR are dysfunctional due to downregulation of the inwardly rectifying potassium channel Kir4.1. Metformin, a commonly used oral antidiabetic drug, is known to elicit its action through 5′ adenosine monophosphate-activated protein kinase (AMPK), a cellular metabolic regulator; however, its effect on Kir4.1 channels is unknown. For this study, we hypothesized that metformin treatment would correct circadian rhythm disruption and Kir4.1 channel dysfunction in db/db mice. Methods Metformin was given orally to db/db mice. Wheel-running activity, retinal levels of Kir4.1, and AMPK phosphorylation were determined at study termination. In parallel, rat retinal Müller cell line (rMC-1) cells were treated using metformin and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to assess the effect of AMPK activation on the Kir4.1 channel. Results The wheel-running activity of the db/db mice was improved following the metformin treatment. The Kir4.1 level in Müller cells was corrected after metformin treatment. Metformin treatment led to an upregulation of clock regulatory genes such as melanopsin (Opn4) and aralkylamine N-acetyltransferase (Aanat). In rMC-1 cells, AMPK activation via AICAR and metformin resulted in increased Kir4.1 and intermediate core clock component Bmal-1 protein expression. The silencing of Prkaa1 (gene for AMPKα1) led to decreased Kir4.1 and Bmal-1 protein expression. Conclusions Our findings demonstrate that metformin corrects abnormal circadian rhythm and Kir4.1 channels in db/db mouse a model of type 2 diabetes. Metformin could represent a critical pharmacological agent for preventing Müller cell dysfunction observed in human DR.