- Browse by Author
Browsing by Author "Desta, Zeruesenay"
Now showing 1 - 10 of 59
Results Per Page
Sort Options
Item Age-Related Changes in MicroRNA Expression and Pharmacogenes in Human Liver(Wiley, 2015-08) Burgess, Kimberly S.; Philips, Santosh; Benson, Eric A.; Desta, Zeruesenay; Gaedigk, Andrea; Gaedigk, Roger; Segar, Matthew W.; Liu, Yunlong; Skaar, Todd C.; Department of Pharmacology and Toxicology, IU School of MedicineDevelopmental changes in the liver can significantly impact drug disposition. Due to the emergence of microRNAs (miRNAs) as important regulators of drug disposition gene expression, we studied age-dependent changes in miRNA expression. Expression of 533 miRNAs was measured in 90 human liver tissues (fetal, pediatric [1-17 years], and adult [28-80 years]; n = 30 each). In all, 114 miRNAs were upregulated and 72 were downregulated from fetal to pediatric, and 2 and 3, respectively, from pediatric to adult. Among the developmentally changing miRNAs, 99 miRNA-mRNA interactions were predicted or experimentally validated (e.g., hsa-miR-125b-5p-CYP1A1; hsa-miR-34a-5p-HNF4A). In human liver samples (n = 10 each), analyzed by RNA-sequencing, significant negative correlations were observed between the expression of >1,000 miRNAs and mRNAs of drug disposition and regulatory genes. Our data suggest a mechanism for the marked changes in hepatic gene expression between the fetal and pediatric developmental periods, and support a role for these age-dependent miRNAs in regulating drug disposition.Item Anastrozole has an association between degree of estrogen suppression and outcomes in early breast cancer and is a ligand for estrogen receptor α(American Association of Cancer Research, 2020-06-15) Ingle, James N.; Cairns, Junmei; Suman, Vera J.; Shepherd, Lois E.; Fasching, Peter A.; Hoskin, Tanya L.; Singh, Ravinder J.; Desta, Zeruesenay; Kalari, Krishna R.; Ellis, Matthew J.; Goss, Paul E.; Chen, Bingshu E.; Volz, Bernhard; Barman, Poulami; Carlson, Erin E.; Haddad, Tufia; Goetz, Matthew P.; Goodnature, Barbara; Cuellar, Matthew E.; Walters, Michael A.; Correia, Cristina; Kaufmann, Scott H.; Weinshilboum, Richard M.; Wang, Liewei; Medicine, School of MedicinePurpose: To determine if the degree of estrogen suppression with aromatase inhibitors (AI: anastrozole, exemestane, letrozole) is associated with efficacy in early-stage breast cancer, and to examine for differences in the mechanism of action between the three AIs. Experimental design: Matched case-control studies [247 matched sets from MA.27 (anastrozole vs. exemestane) and PreFace (letrozole) trials] were undertaken to assess whether estrone (E1) or estradiol (E2) concentrations after 6 months of adjuvant therapy were associated with risk of an early breast cancer event (EBCE). Preclinical laboratory studies included luciferase activity, cell proliferation, radio-labeled ligand estrogen receptor binding, surface plasmon resonance ligand receptor binding, and nuclear magnetic resonance assays. Results: Women with E1 ≥1.3 pg/mL and E2 ≥0.5 pg/mL after 6 months of AI treatment had a 2.2-fold increase in risk (P = 0.0005) of an EBCE, and in the anastrozole subgroup, the increase in risk of an EBCE was 3.0-fold (P = 0.001). Preclinical laboratory studies examined mechanisms of action in addition to aromatase inhibition and showed that only anastrozole could directly bind to estrogen receptor α (ERα), activate estrogen response element-dependent transcription, and stimulate growth of an aromatase-deficient CYP19A1-/- T47D breast cancer cell line. Conclusions: This matched case-control clinical study revealed that levels of estrone and estradiol above identified thresholds after 6 months of adjuvant anastrozole treatment were associated with increased risk of an EBCE. Preclinical laboratory studies revealed that anastrozole, but not exemestane or letrozole, is a ligand for ERα. These findings represent potential steps towards individualized anastrozole therapy.Item Association of Variants in Candidate Genes with Lipid Profiles in Women with Early Breast Cancer on Adjuvant Aromatase Inhibitor Therapy(American Association for Cancer Research, 2016-03-15) Santa-Maria, Cesar A.; Blackford, Amanda; Nguyen, Anne T.; Skaar, Todd C.; Philips, Santosh; Oesterreich, Steffi; Rae, James M.; Desta, Zeruesenay; Robarge, Jason; Henry, Norah Lynn; Storniolo, Anna M.; Hayes, Daniel F.; Blumenthal, Roger S.; Ouyang, Pamela; Post, Wendy S.; Flockhart, David A.; Stearns, Vered; Medicine, School of MedicinePurpose: Aromatase inhibitors can exert unfavorable effects on lipid profiles; however, previous studies have reported inconsistent results. We describe the association of single-nucleotide polymorphisms (SNP) in candidate genes with lipid profiles in women treated with adjuvant aromatase inhibitors. Experimental design: We conducted a prospective observational study to test the associations between SNPs in candidate genes in estrogen signaling and aromatase inhibitor metabolism pathways with fasting lipid profiles during the first 3 months of aromatase inhibitor therapy in postmenopausal women with early breast cancer randomized to adjuvant letrozole or exemestane. We performed genetic association analysis and multivariable linear regressions using dominant, recessive, and additive models. Results: A total of 303 women had complete genetic and lipid data and were evaluable for analysis. In letrozole-treated patients, SNPs in CYP19A1, including rs4646, rs10046, rs700518, rs749292, rs2289106, rs3759811, and rs4775936 were significantly associated with decreases in triglycerides by 20.2 mg/dL and 39.3 mg/dL (P < 0.00053), respectively, and with variable changes in high-density lipoprotein (HDL-C) from decreases by 4.2 mg/dL to increases by 9.8 mg/dL (P < 0.00053). Conclusions: Variants in CYP19A1 are associated with decreases in triglycerides and variable changes in HDL-C in postmenopausal women on adjuvant aromatase inhibitors. Future studies are needed to validate these findings, and to identify breast cancer survivors who are at higher risk for cardiovascular disease with aromatase inhibitor therapy.Item Associations between genetic variants and the effect of letrozole and exemestane on bone mass and bone turnover(SpringerLink, 2015-11) Oesterreich, Steffi; Henry, N. Lynn; Kidwell, Kelley M.; Van Poznak, Catherine H.; Skaar, Todd C.; Dantzer, Jessica; Li, Lang; Hangartner, Thomas N.; Peacock, Munro; Nguyen, Anne T.; Rae, James M.; Desta, Zeruesenay; Philips, Santosh; Storniolo, Anna M.; Stearns, Vered; Hayes, Daniel F.; Flockhart, David A.; Medicine, School of MedicineAdjuvant therapy for hormone receptor (HR) positive postmenopausal breast cancer patients includes aromatase inhibitors (AI). While both the non-steroidal AI letrozole and the steroidal AI exemestane decrease serum estrogen concentrations, there is evidence that exemestane may be less detrimental to bone. We hypothesized that single nucleotide polymorphisms (SNP) predict effects of AIs on bone turnover. Early stage HR-positive breast cancer patients were enrolled in a randomized trial of exemestane versus letrozole. Effects of AI on bone mineral density (BMD) and bone turnover markers (BTM), and associations between SNPs in 24 candidate genes and changes in BMD or BTM were determined. Of the 503 enrolled patients, paired BMD data were available for 123 and 101 patients treated with letrozole and exemestane, respectively, and paired BTM data were available for 175 and 173 patients, respectively. The mean change in lumbar spine BMD was significantly greater for letrozole-treated (-3.2 %) compared to exemestane-treated patients (-1.0 %) (p = 0.0016). Urine N-telopeptide was significantly increased in patients treated with exemestane (p = 0.001) but not letrozole. Two SNPs (rs4870061 and rs9322335) in ESR1 and one SNP (rs10140457) in ESR2 were associated with decreased BMD in letrozole-treated patients. In the exemestane-treated patients, SNPs in ESR1 (Rs2813543) and CYP19A1 (Rs6493497) were associated with decreased bone density. Exemestane had a less negative impact on bone density compared to letrozole, and the effects of AI therapy on bone may be impacted by genetic variants in the ER pathway.Item Chiral Plasma Pharmacokinetics and Urinary Excretion of Bupropion and Metabolites in Healthy Volunteers(ASPET, 2016-08) Masters, Andrea R.; Gufford, Brandon T.; Lu, Jessica Bo Li; Metzger, Ingrid F.; Jones, David R.; Desta, Zeruesenay; Medicine, School of MedicineBupropion, widely used as an antidepressant and smoking cessation aid, undergoes complex metabolism to yield numerous metabolites with unique disposition, effect, and drug–drug interactions (DDIs) in humans. The stereoselective plasma and urinary pharmacokinetics of bupropion and its metabolites were evaluated to understand their potential contributions to bupropion effects. Healthy human volunteers (n = 15) were administered a single oral dose of racemic bupropion (100 mg), which was followed by collection of plasma and urine samples and determination of bupropion and metabolite concentrations using novel liquid chromatography–tandem mass spectrometry assays. Time-dependent, elimination rate–limited, stereoselective pharmacokinetics were observed for all bupropion metabolites. Area under the plasma concentration-time curve from zero to infinity ratios were on average approximately 65, 6, 6, and 4 and Cmax ratios were approximately 35, 6, 3, and 0.5 for (2R,3R)-/(2S,3S)-hydroxybupropion, R-/S-bupropion, (1S,2R)-/(1R,2S)-erythrohydrobupropion, and (1R,2R)-/(1S,2S)-threohydrobupropion, respectively. The R-/S-bupropion and (1R,2R)-/(1S,2S)-threohydrobupropion ratios are likely indicative of higher presystemic metabolism of S- versus R-bupropion by carbonyl reductases. Interestingly, the apparent renal clearance of (2S,3S)-hydroxybupropion was almost 10-fold higher than that of (2R,3R)-hydroxybupropion. The prediction of steady-state pharmacokinetics demonstrated differential stereospecific accumulation [partial area under the plasma concentration-time curve after the final simulated bupropion dose (300–312 hours) from 185 to 37,447 nM⋅h] and elimination [terminal half-life of approximately 7–46 hours] of bupropion metabolites, which may explain observed stereoselective differences in bupropion effect and DDI risk with CYP2D6 at steady state. Further elucidation of bupropion and metabolite disposition suggests that bupropion is not a reliable in vivo marker of CYP2B6 activity. In summary, to our knowledge, this is the first comprehensive report to provide novel insight into mechanisms underlying bupropion disposition by detailing the stereoselective pharmacokinetics of individual bupropion metabolites, which will enhance clinical understanding of bupropion’s effects and DDIs with CYP2D6.Item Circulating miRNAs as Biomarkers for CYP2B6 Enzyme Activity.(Wiley, 2021-02) Ipe, Joseph; Li, Rudong; Metzger, Ingrid F.; Bo Li Lu, Jessica; Gufford, Brandon T.; Desta, Zeruesenay; Liu, Yunlong; Skaar, Todd C.The CYP2B6 gene is highly polymorphic and its activity shows wide interindividual variability. However, substantial variability in CYP2B6 activity remains unexplained by the known CYP2B6 genetic variations. Circulating, cell-free micro RNAs (miRNAs) may serve as biomarkers of hepatic enzyme activity. CYP2B6 activity in 72 healthy volunteers was determined using the disposition of efavirenz as a probe drug. Circulating miRNA expression was quantified from baseline plasma samples. A linear model consisting of the effects of miRNA expression, genotype-determined metabolizer status, and demographic information was developed to predict CYP2B6 activity. Expression of 2,510 miRNAs were quantified out of which 7 miRNAs, together with the CYP2B6-genotypic metabolizer status and demographics, was shown to be predictive markers for CYP2B6 activity. The reproducibility of the model was evaluated by cross-validation. The average Pearson's correlation (R) between the predicted and observed maximum plasma concentration (C(max) ) ratios of efavirenz and its metabolite-8-OH efavirenz using the linear model with all features (7 miRNA + metabolizer status + age + sex + race) was 0.6702. Similar results were also observed using area under the curve (AUC) ratios (Pearson correlation's R = 0.6035). Thus, at least 36% (R(2) ) of the variability of in vivo CYP2B6 activity was explained using this model. This is a significant improvement over the models using only the genotype-based metabolizer status or the demographic information, which explained only 6% or less of the variability of in vivo CYP2B6 activity. Our results, therefore, demonstrate that circulating plasma miRNAs can be valuable biomarkers for in vivo CYP2B6 activity.Item Clinical and educational impact of pharmacogenomics testing: a case series from the INGENIOUS trial(Future Medicine, 2017-06) Pierson, Rebecca C.; Gufford, Brandon T.; Desta, Zeruesenay; Eadon, Michael T.; Medicine, School of MedicinePharmacogenomic testing has become increasingly widespread. However, there remains a need to bridge the gap between test results and providers lacking the expertise required to interpret these results. The Indiana Genomics Implementation trial is underway at our institution to examine total healthcare cost and patient outcomes after genotyping in a safety-net healthcare system. As part of the study, trial investigators and clinical pharmacology fellows interpret genotype results, review patient histories and medication lists and evaluate potential drug-drug interactions. We present a case series of patients in whom pharmacogenomic consultations aided providers in appropriately applying pharmacogenomic results within the clinical context. Formal consultations not only provide valuable patient care information but educational opportunities for the fellows to cement pharmacogenomic concepts.Item Clinical Opportunities for Germline Pharmacogenetics and Management of Drug-Drug Interactions in Patients With Advanced Solid Cancers(American Society of Clinical Oncology, 2022) Shugg, Tyler; Ly, Reynold C.; Rowe, Elizabeth J.; Philips, Santosh; Hyder, Mustafa A.; Radovich, Milan; Rosenman, Marc B.; Pratt, Victoria M.; Callaghan, John T.; Desta, Zeruesenay; Schneider, Bryan P.; Skaar, Todd C.; Medicine, School of MedicinePurpose: Precision medicine approaches, including germline pharmacogenetics (PGx) and management of drug-drug interactions (DDIs), are likely to benefit patients with advanced cancer who are frequently prescribed multiple concomitant medications to treat cancer and associated conditions. Our objective was to assess the potential opportunities for PGx and DDI management within a cohort of adults with advanced cancer. Methods: Medication data were collected from the electronic health records for 481 subjects since their first cancer diagnosis. All subjects were genotyped for variants with clinically actionable recommendations in Clinical Pharmacogenetics Implementation Consortium guidelines for 13 pharmacogenes. DDIs were defined as concomitant prescription of strong inhibitors or inducers with sensitive substrates of the same drug-metabolizing enzyme and were assessed for six major cytochrome P450 (CYP) enzymes. Results: Approximately 60% of subjects were prescribed at least one medication with Clinical Pharmacogenetics Implementation Consortium recommendations, and approximately 14% of subjects had an instance for actionable PGx, defined as a prescription for a drug in a subject with an actionable genotype. The overall subject-level prevalence of DDIs and serious DDIs were 50.3% and 34.8%, respectively. Serious DDIs were most common for CYP3A, CYP2D6, and CYP2C19, occurring in 24.9%, 16.8%, and 11.7% of subjects, respectively. When assessing PGx and DDIs together, approximately 40% of subjects had at least one opportunity for a precision medicine-based intervention and approximately 98% of subjects had an actionable phenotype for at least one CYP enzyme. Conclusion: Our findings demonstrate numerous clinical opportunities for germline PGx and DDI management in adults with advanced cancer.Item Clinical Opportunities for Germline Pharmacogenetics and Management of Drug-Drug Interactions in Patients With Advanced Solid Cancers(ASCO, 2022) Shugg, Tyler; Ly, Reynold C.; Rowe, Elizabeth J.; Philips, Santosh; Hyder, Mustafa A.; Radovich, Milan; Rosenman, Marc B.; Pratt, Victoria M.; Callaghan, John T.; Desta, Zeruesenay; Schneider, Bryan P.; Skaar, Todd C.; Medicine, School of MedicinePURPOSE: Precision medicine approaches, including germline pharmacogenetics (PGx) and management of drug-drug interactions (DDIs), are likely to benefit patients with advanced cancer who are frequently prescribed multiple concomitant medications to treat cancer and associated conditions. Our objective was to assess the potential opportunities for PGx and DDI management within a cohort of adults with advanced cancer. METHODS: Medication data were collected from the electronic health records for 481 subjects since their first cancer diagnosis. All subjects were genotyped for variants with clinically actionable recommendations in Clinical Pharmacogenetics Implementation Consortium guidelines for 13 pharmacogenes. DDIs were defined as concomitant prescription of strong inhibitors or inducers with sensitive substrates of the same drug-metabolizing enzyme and were assessed for six major cytochrome P450 (CYP) enzymes. RESULTS: Approximately 60% of subjects were prescribed at least one medication with Clinical Pharmacogenetics Implementation Consortium recommendations, and approximately 14% of subjects had an instance for actionable PGx, defined as a prescription for a drug in a subject with an actionable genotype. The overall subject-level prevalence of DDIs and serious DDIs were 50.3% and 34.8%, respectively. Serious DDIs were most common for CYP3A, CYP2D6, and CYP2C19, occurring in 24.9%, 16.8%, and 11.7% of subjects, respectively. When assessing PGx and DDIs together, approximately 40% of subjects had at least one opportunity for a precision medicine-based intervention and approximately 98% of subjects had an actionable phenotype for at least one CYP enzyme. CONCLUSION: Our findings demonstrate numerous clinical opportunities for germline PGx and DDI management in adults with advanced cancer.Item Clinical Opportunities for Germline Pharmacogenetics and Management of Drug-Drug Interactions in Patients With Advanced Solid Cancers.(American Society of Clinical Oncology, 2022-02) Shugg, Tyler; Ly, Reynold C.; Rowe, Elizabeth J.; Philips, Santosh; Hyder, Mustafa A.; Radovich, Milan; Rosenman, Marc B.; Pratt, Victoria M.; Callaghan, John T.; Desta, Zeruesenay; Schneider, Bryan P.; Skaar, Todd C.PURPOSE: Precision medicine approaches, including germline pharmacogenetics (PGx) and management of drug-drug interactions (DDIs), are likely to benefit patients with advanced cancer who are frequently prescribed multiple concomitant medications to treat cancer and associated conditions. Our objective was to assess the potential opportunities for PGx and DDI management within a cohort of adults with advanced cancer. METHODS: Medication data were collected from the electronic health records for 481 subjects since their first cancer diagnosis. All subjects were genotyped for variants with clinically actionable recommendations in Clinical Pharmacogenetics Implementation Consortium guidelines for 13 pharmacogenes. DDIs were defined as concomitant prescription of strong inhibitors or inducers with sensitive substrates of the same drug-metabolizing enzyme and were assessed for six major cytochrome P450 (CYP) enzymes. RESULTS: Approximately 60% of subjects were prescribed at least one medication with Clinical Pharmacogenetics Implementation Consortium recommendations, and approximately 14% of subjects had an instance for actionable PGx, defined as a prescription for a drug in a subject with an actionable genotype. The overall subject-level prevalence of DDIs and serious DDIs were 50.3% and 34.8%, respectively. Serious DDIs were most common for CYP3A, CYP2D6, and CYP2C19, occurring in 24.9%, 16.8%, and 11.7% of subjects, respectively. When assessing PGx and DDIs together, approximately 40% of subjects had at least one opportunity for a precision medicine-based intervention and approximately 98% of subjects had an actionable phenotype for at least one CYP enzyme. CONCLUSION: Our findings demonstrate numerous clinical opportunities for germline PGx and DDI management in adults with advanced cancer.