- Browse by Author
Browsing by Author "Department of Otolaryngology--Head and Neck Surgery, IU School of Medicine"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Affective Properties of Mothers' Speech to Infants With Hearing Impairment and Cochlear Implants(American Speech-Language-Hearing Association, 2015-06) Kondaurova, Maria V.; Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine; Department of Otolaryngology--Head and Neck Surgery, IU School of MedicinePURPOSE: The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. METHOD: Mothers of infants with HI and mothers of infants with normal hearing matched by age (NH-AM) or hearing experience (NH-EM) were recorded playing with their infants during 3 sessions over a 12-month period. Speech samples of 25 s were low-pass filtered, leaving intonation but not speech information intact. Sixty adults rated the stimuli along 5 scales: positive/negative affect and intention to express affection, to encourage attention, to comfort/soothe, and to direct behavior. RESULTS: Low-pass filtered speech to HI and NH-EM groups was rated as more positive, affective, and comforting compared with the such speech to the NH-AM group. Speech to infants with HI and with NH-AM was rated as more directive than speech to the NH-EM group. Mothers decreased affective qualities in speech to all infants but increased directive qualities in speech to infants with NH-EM over time. CONCLUSIONS: Mothers fine-tune communicative intent in speech to their infant's developmental stage. They adjust affective qualities to infants' hearing experience rather than to chronological age but adjust directive qualities of speech to the chronological age of their infants.Item Stem cell-derived tissue-engineered constructs for hemilaryngeal reconstruction(Sage Publications, 2014-02) Halum, Stacey L.; Bijangi-Vishehsaraei, Khadijeh; Zhang, Hongji; Sowinski, John; Bottino, Marco C.; Department of Otolaryngology--Head and Neck Surgery, IU School of MedicineOBJECTIVES: As an initial step toward our goal of developing a completely tissue-engineered larynx, the aim of this study was to describe and compare three strategies of creating tissue-engineered muscle-polymer constructs for hemilaryngeal reconstruction. METHODS: Cartilage-mimicking polymer was developed from electrospun poly(D,L-lactide-co-ε-caprolactone) (PCL). Primary muscle progenitor cell cultures were derived from syngeneic F344 rat skeletal muscle biopsies. Twenty F344 rats underwent resection of the outer hemilaryngeal cartilage with the underlying laryngeal adductor muscle. The defects were repaired with muscle stem cell-derived muscle-PCL constructs (5 animals), myotube-derived muscle-PCL constructs (5 animals), motor end plate-expressing muscle-PCL constructs (5 animals), or PCL alone (controls; 5 animals). The outcome measures at 1 month included animal survival, muscle thickness, and innervation status as determined by electromyography and immunohistochemistry. RESULTS: All of the animals survived the 1-month implant period and had appropriate weight gain. The group that received motor end plate-expressing muscle-PCL constructs demonstrated the greatest muscle thickness and the strongest innervation, according to electromyographic activity and the percentage of motor end plates that had nerve contact. CONCLUSIONS: Although all of the tissue-engineered constructs provided effective reconstruction, those that expressed motor end plates before implantation yielded muscle that was more strongly innervated and viable. This finding suggests that this novel approach may be useful in the development of a tissue-engineered laryngeal replacement.Item Vibratory Stimulus Reduces In Vitro Biofilm Formation On Tracheoesophageal Voice Prostheses(Wiley, 2016) Wannemuehler, Todd J.; Lobo, Brian C.; Johnson, Jeffrey D.; Deig, Christopher R.; Ting, Jonathan Y.; Gregory, Richard L.; Department of Otolaryngology--Head and Neck Surgery, IU School of MedicineObjectives/Hypothesis Demonstrate that biofilm formation will be reduced on tracheoesophageal prostheses when vibratory stimulus is applied, compared to controls receiving no vibratory stimulus, in a dynamic in vitro model of biofilm accumulation simulating the interface across the tracheoesophageal puncture site. Study Design Prospective, randomized, controlled, crossover in university laboratory. Methods Ex vivo tracheoesophageal prostheses were obtained from university-affiliated speech language pathologists at Indiana University School of Medicine, Indianapolis. Prostheses demonstrating physical integrity and an absence of gross biofilm accumulation were utilized. Sixteen prostheses were cleansed and sterilized prior to random placement by length in two modified Robbins devices arranged in parallel. Each device was seeded with a polymicrobial oral flora on day 1 and received basal artificial salivary flow continuously with three growth medium meals daily. One device was randomly selected for vibratory stimulus, and 2 minutes of vibration was applied to each prosthesis before and after meals for 5 days. The prostheses were explanted and sonicated, and the biofilm cultured for enumeration. This process was repeated after study arm crossover. Results Tracheoesophageal prostheses in the dynamic model receiving vibratory stimulus demonstrated reduced gross biofilm accumulation and a significant biofilm colony forming unit per milliliter reduction of 5.56-fold compared to nonvibratory controls (P < 0.001). Significant reductions were observed within length subgroups. Conclusion Application of vibratory stimulus around meal times significantly reduces biofilm accumulation on tracheoesophageal prostheses in a dynamic in vitro model. Further research using this vibratory stimulus method in vivo will be required to determine if reduced biofilm accumulation correlates with longer device lifespan.