- Browse by Author
Browsing by Author "Department of Ophthalmology, School of Medicine"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: A review(Elsevier, 2017) Bracha, Peter; Moore, Nicholas A.; Ciulla, Thomas A.; WuDunn, Darrell; Cantor, Louis B.; Department of Ophthalmology, School of MedicineThe acute and chronic effects of repeated intravitreal antivascular endothelial growth factor (VEGF) injections on intraocular pressure have not been fully characterized, and the development of sustained ocular hypertension could adversely affect patients who are at risk of glaucomatous optic neuropathy. As expected, volume-driven, acute ocular hypertension immediately follows intravitreal injection, but this pressure elevation is generally transient and well tolerated. Several medications have been investigated to limit acute ocular hypertension following anti-VEGF therapy, but the benefits of pretreatment are not conclusive. Chronic, sustained ocular hypertension, distinct from the short-term acute ocular hypertension after each injection, has also been associated with repeated intravitreal anti-VEGF injections. Risk factors for chronic ocular hypertension include the total number of injections, a greater frequency of injection, and preexisting glaucoma. Proposed mechanisms for chronic ocular hypertension include microparticle obstruction, toxic or inflammatory effects on trabecular meshwork, as well as alterations in outflow facility by anti-VEGF agents. Although limiting anti-VEGF therapy could minimize the risk of both acute and chronic ocular hypertension, foregoing anti-VEGF therapy risks progression of various macular diseases with resulting permanent central vision loss. While definitive evidence of damage to the retinal nerve fiber layer is lacking, patients receiving repeated injections should be monitored for ocular hypertension and patients in whom sustained ocular hypertension subsequently developed should be periodically monitored for glaucomatous changes with optic nerve optical coherence tomography and static visual fields.Item Adeno-Associated Virus Overexpression of Angiotensin-Converting Enzyme-2 Reverses Diabetic Retinopathy in Type 1 Diabetes in Mice(Elsevier, 2016) Dominguez, James M., II; Hu, Ping; Caballero, Sergio; Moldovan, Leni; Verma, Amrisha; Oudit, Gavin Y.; Li, Qiuhong; Grant, Maria B.; Department of Ophthalmology, School of MedicineAngiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the renin angiotensin system that regulates the classic renin angiotensin system axis. We aimed to determine whether local retinal overexpression of adenoassociated virus (AAV)-ACE2 prevents or reverses diabetic retinopathy. Green fluorescent protein (GFP)-chimeric mice were generated to distinguish resident (retinal) from infiltrating bone marrow-derived inflammatory cells and were made diabetic using streptozotocin injections. Retinal digestion using trypsin was performed and acellular capillaries enumerated. Capillary occlusion by GFP(+) cells was used to measure leukostasis. Overexpression of ACE2 prevented (prevention cohort: untreated diabetic, 11.3 ± 1.4; ACE2 diabetic, 6.4 ± 0.9 per mm(2)) and partially reversed (reversal cohort: untreated diabetic, 15.7 ± 1.9; ACE2 diabetic, 6.5 ± 1.2 per mm(2)) the diabetes-associated increase of acellular capillaries and the increase of infiltrating inflammatory cells into the retina (F4/80(+)) (prevention cohort: untreated diabetic, 24.2 ± 6.7; ACE2 diabetic, 2.5 ± 1.6 per mm(2); reversal cohort: untreated diabetic, 56.8 ± 5.2; ACE2 diabetic, 5.6 ± 2.3 per mm(2)). In both study cohorts, intracapillary bone marrow-derived cells, indicative of leukostasis, were only observed in diabetic animals receiving control AAV injections. These results indicate that diabetic retinopathy, and possibly other diabetic microvascular complications, can be prevented and reversed by locally restoring the balance between the classic and vasoprotective renin angiotensin system.Item Depressed basal hypothalamic neuronal activity in type-1 diabetic mice is correlated with proinflammatory secretion of HMBG1(Elsevier, 2016-02-26) Thinschmidt, Jeffrey S.; Colon-Perez, Luis M.; Febo, Marcelo; Caballero, Sergio; King, Michael A.; White, Fletcher A.; Grant, Maria B.; Department of Ophthalmology, School of MedicineWe recently found indicators of hypothalamic inflammation and neurodegeneration linked to the loss of neuroprotective factors including insulin-like growth factor (IGF-1) and IGF binding protein-2 (IGFBP-3) in mice made diabetic using streptozotocin (STZ). In the current work, a genetic model of type-1 diabetes (Ins2(Akita) mouse) was used to evaluate changes in neuronal activity and concomitant changes in the proinflammatory mediator high-mobility group box-1 (HMBG1). We found basal hypothalamic neuronal activity as indicated by manganese-enhanced magnetic resonance imaging (MEMRI) was significantly decreased in 8 months old, but not 2 months old Ins2(Akita) diabetic mice compared to controls. In tissue from the same animals we evaluated the expression of HMBG1 using immunohistochemistry and confocal microscopy. We found decreased HMBG1 nuclear localization in the paraventricular nucleus of the hypothalamus (PVN) in 8 months old, but not 2 months old diabetic animals indicating nuclear release of the protein consistent with an inflammatory state. Adjacent thalamic regions showed little change in HMBG1 nuclear localization and neuronal activity as a result of diabetes. This work extends our previous findings demonstrating changes consistent with hypothalamic neuroinflammation in STZ treated animals, and shows active inflammatory processes are correlated with changes in basal hypothalamic neuronal activity in Ins2(Akita) mice.Item Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy(SpringerNature, 2017-05-03) Lee, Sangmi; Elaskandrany, Menna; Lau, Lester F.; Lazzaro, Douglas; Grant, Maria B.; Chaqour, Brahim; Department of Ophthalmology, School of MedicineCYR61-CTGF-NOV (CCN)1 is a dynamically expressed extracellular matrix (ECM) protein with critical functions in cardiovascular development and tissue repair. Angiogenic endothelial cells (ECs) are a major cellular source of CCN1 which, once secreted, associates with the ECM and the cell surface and tightly controls the bidirectional flow of information between cells and the surrounding matrix. Endothelium-specific CCN1 deletion in mice using a cre/lox strategy induces EC hyperplasia and causes blood vessels to coalesce into large flat hyperplastic sinuses with no distinctive hierarchical organization. This is consistent with the role of CCN1 as a negative feedback regulator of vascular endothelial growth factor (VEGF) receptor activation. In the mouse model of oxygen-induced retinopathy (OIR), pericytes become the predominant CCN1 producing cells. Pericyte-specific deletion of CCN1 significantly decreases pathological retinal neovascularization following OIR. CCN1 induces the expression of the non-canonical Wnt5a in pericyte but not in EC cultures. In turn, exogenous Wnt5a inhibits CCN1 gene expression, induces EC proliferation and increases hypersprouting. Concordantly, treatment of mice with TNP470, a non-canonical Wnt5a inhibitor, reestablishes endothelial expression of CCN1 and significantly decreases pathological neovascular growth in OIR. Our data highlight the significance of CCN1-EC and CCN1-pericyte communication signals in driving physiological and pathological angiogenesis.Item The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor(Elsevier, 2017-08) Hammer, Sandra S.; Beli, Eleni; Kady, Nermin; Wang, Qi; Wood, Kiana; Lydic, Todd A.; Malek, Goldis; Saban, Daniel R.; Wang, Xiaoxin X.; Hazra, Sugata; Levi, Moshe; Busik, Julia V.; Grant, Maria B.; Department of Ophthalmology, School of MedicineDiabetic retinopathy (DR) is a complication secondary to diabetes and is the number one cause of blindness among working age individuals worldwide. Despite recent therapeutic breakthroughs using pharmacotherapy, a cure for DR has yet to be realized. Several clinical trials have highlighted the vital role dyslipidemia plays in the progression of DR. Additionally, it has recently been shown that activation of Liver X receptor (LXRα/LXRβ) prevents DR in diabetic animal models. LXRs are nuclear receptors that play key roles in regulating cholesterol metabolism, fatty acid metabolism and inflammation. In this manuscript, we show insight into DR pathogenesis by demonstrating an innovative signaling axis that unifies key metabolic regulators, Sirtuin 1 and LXR, in modulating retinal cholesterol metabolism and inflammation in the diabetic retina. Expression of both regulators, Sirtuin 1 and LXR, are significantly decreased in diabetic human retinal samples and in a type 2 diabetic animal model. Additionally, activation of LXR restores reverse cholesterol transport, prevents inflammation, reduces pro-inflammatory macrophages activity and prevents the formation of diabetes-induced acellular capillaries. Taken together, the work presented in this manuscript highlights the important role lipid dysregulation plays in DR progression and offers a novel potential therapeutic target for the treatment of DR.Item Retinoblastoma(Springer, 2015) Dimaras, Helen; Corson, Timothy W.; Cobrinik, David; White, Abby; Zhao, Junyang; Munier, Francis L.; Abramson, David H.; Shields, Carol L.; Chantada, Guillermo L.; Njuguna, Festus; Gallie, Brenda L.; Department of Ophthalmology, School of MedicineRetinoblastoma is a rare cancer of the infant retina that is diagnosed in approximately 8,000 children each year worldwide. It forms when both retinoblastoma gene (RB1) alleles are mutated in a susceptible retinal cell, probably a cone photoreceptor precursor. Loss of the tumour-suppressive functions of the retinoblastoma protein (pRB) leads to uncontrolled cell division and recurrent genomic changes during tumour progression. Although pRB is expressed in almost all tissues, cone precursors have biochemical and molecular features that may sensitize them to RB1 loss and enable tumorigenesis. Patient survival is >95% in high-income countries but <30% globally. However, outcomes are improving owing to increased disease awareness for earlier diagnosis, application of new guidelines and sharing of expertise. Intra-arterial and intravitreal chemotherapy have emerged as promising methods to salvage eyes that with conventional treatment might have been lost. Ongoing international collaborations will replace the multiple different classifications of eye involvement with standardized definitions to consistently assess the eligibility, efficacy and safety of treatment options. Life-long follow-up is warranted, as survivors of heritable retinoblastoma are at risk for developing second cancers. Defining the molecular consequences of RB1loss in diverse tissues may open new avenues for treatment and prevention of retinoblastoma, as well as second cancers, in patients with germline RB1 mutations.