- Browse by Author
Browsing by Author "Department of Anatomy and Cell Biology, IU School of Medicine"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item Acupuncture treatment for ischaemic stroke in young adults: protocol for a randomised, sham-controlled clinical trial(BMJ, 2016) Chen, Lifang; Fang, Jianqiao; Jin, Xiaoming; Keeler, Crystal Lynn; Gao, Hong; Fang, Zhen; Chen, Qin; Department of Anatomy and Cell Biology, IU School of MedicineINTRODUCTION: Stroke in young adults is not uncommon. Although the overall incidence of stroke has been recently declining, the incidence of stroke in young adults is increasing. Traditional vascular risk factors are the main cause of young ischaemic stroke. Acupuncture has been shown to benefit stroke rehabilitation and ameliorate the risk factors for stroke. The aims of this study were to determine whether acupuncture treatment will be effective in improving the activities of daily living (ADL), motor function and quality of life (QOL) in patients of young ischaemic stroke, and in preventing stroke recurrence by controlling blood pressure, lipids and body weight. METHODS AND ANALYSIS: In this randomised, sham-controlled, participant-blinded and assessor-blinded clinical trial, 120 patients between 18 and 45 years of age with a recent (within 1 month) ischaemic stroke will be randomised for an 8-week acupuncture or sham acupuncture treatment. The primary outcome will be the Barthel Index for ADL. The secondary outcomes will include the Fugl-Meyer Assessment for motor function; the World Health Organization Quality of Life BREF (WHOQOL-BREF) for QOL; and risk factors that are measured by ambulatory blood pressure, the fasting serum lipid, body mass index and waist circumference. Incidence of adverse events and long-term mortality and recurrence rate during a 10-year and 30-year follow-up will also be investigated. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Ethics Committee of The Third Affiliated Hospital of Zhejiang Chinese Medical University. Protocol V.3 was approved in June 2013. The results will be disseminated in a peer-reviewed journal and presented at international congresses. The results will also be disseminated to patients by telephone during follow-up calls enquiring on the patient's post-study health status. TRIAL REGISTRATION NUMBER: ChiCTR-TRC- 13003317; Pre-results.Item Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles.(Springer, 2009-04) Kubek, Michael J.; Domb, Abraham J.; Veronesi, Michael C.; Department of Anatomy and Cell Biology, IU School of MedicineThyrotropin-releasing hormone (TRH; Protirelin), an endogenous neuropeptide, is known to have anticonvulsant effects in animal seizure models and certain intractable epileptic patients. Its duration of action, however, is limited by rapid tissue metabolism and the blood—brain barrier. Direct nose-to-brain delivery of neuropeptides in sustained-release biodegradable nanoparticles (NPs) is a promising mode of therapy for enhancing CNS neuropeptide bioavailability. To provide proof of principle for this delivery approach, we used the kindling model of temporal lobe epilepsy to show that 1) TRH-loaded copolymer microdisks implanted in a seizure focus can attenuate kindling development in terms of behavioral stage, after-discharge duration (ADD), and clonus duration; 2) intranasal administration of an unprotected TRH analog can acutely suppress fully kindled seizures in a concentration-dependent manner in terms of ADD and seizure stage; and 3) intranasal administration of polylactide nanoparticles (PLA-NPs) containing TRH (TRH-NPs) can impede kindling development in terms of behavioral stage, ADD, and clonus duration. Additionally, we used intranasal delivery of fluorescent dye-loaded PLA-NPs in rats and application of dye-loaded or dye-attached NPs to cortical neurons in culture to demonstrate NP uptake and distribution over time in vivo and in vitro respectively. Also, a nanoparticle immunostaining method was developed as a procedure for directly visualizing the tissue level and distribution of neuropeptide-loaded nanoparticles. Collectively, the data provide proof of concept for intranasal delivery of TRH-NPs as a viable means to 1) suppress seizures and perhaps epileptogenesis and 2) become the lead compound for intranasal anticonvulsant nanoparticle therapeutics.Item Comparison of Efficacy of Endogenous and Exogenous IGF-I in Stimulating Matrix Production in Neonatal and Mature Chondrocytes.(SAGE, 2015-10) Aguilar, Izath N.; Trippel, Stephen B.; Shi, Shuiliang; Bonassar, Lawrence J.; Department of Anatomy and Cell Biology, IU School of MedicineObjective: The goal of this study was to compare the efficacy of endogenous upregulation of IGF-I by gene therapy and exogenous addition of insulin-like growth factor I (IGF-I) in enhancing proteoglycan synthesis by skeletally mature and neonatal chondrocytes. Chondrocyte transplantation therapy is a common treatment for focal cartilage lesions, with both mature and neonatal chondrocytes used as a cell source. Additionally, gene therapy strategies to upregulate growth factors such as IGF-I have been proposed to augment chondrocyte transplantation therapies. Methods: Both skeletally mature and neonatal chondrocytes were exposed to either an adeno-associated virus-based plasmid containing the IGF-I gene or exogenous IGF-I. Results: Analysis of IGF-I and glycosaminoglycan production using a 4-parameter dose-response model established a clear connection between the amount of IGF-I produced by cells and their biosynthetic response. Both neonatal and mature chondrocytes showed this relationship, but the sensitivities were quite different, with EC50 of 0.57 ng/mL for neonatal chondrocytes and EC50 of 8.70 ng/mL IGF-I for skeletally mature chondrocytes. Conclusions: These data suggest that IGF-I gene therapy may be more effective with younger cell sources. Both cell types were less sensitive to exogenous IGF-I than endogenous IGF-I.Item Dystrophic spinal deformities in a neurofibromatosis type 1 murine model(PLoS, 2015-03-18) Rhodes, Steven D.; Zhang, Wei; Yang, Dalong; Yang, Hao; Chen, Shi; Wu, Xiahoua; Yang, Xianlin; Mohammad, Khalid S.; Guise, Theresa A.; Bergner, Amanda L.; Stevenson, David A.; Yang, Feng-Chun; Department of Anatomy and Cell Biology, IU School of MedicineDespite the high prevalence and significant morbidity of spinal anomalies in neurofibromatosis type 1 (NF1), the pathogenesis of these defects remains largely unknown. Here, we present two murine models: Nf1flox/-;PeriCre and Nf1flox/-;Col.2.3Cre mice, which recapitulate spinal deformities seen in the human disease. Dynamic histomorphometry and microtomographic studies show recalcitrant bone remodeling and distorted bone microarchitecture within the vertebral spine of Nf1flox/-;PeriCre and Nf1flox/-;Col2.3Cre mice, with analogous histological features present in a human patient with dystrophic scoliosis. Intriguingly, 36-60% of Nf1flox/-;PeriCre and Nf1flox/-;Col2.3Cre mice exhibit segmental vertebral fusion anomalies with boney obliteration of the intervertebral disc (IVD). While analogous findings have not yet been reported in the NF1 patient population, we herein present two case reports of IVD defects and interarticular vertebral fusion in patients with NF1. Collectively, these data provide novel insights regarding the pathophysiology of dystrophic spinal anomalies in NF1, and provide impetus for future radiographic analyses of larger patient cohorts to determine whether IVD and vertebral fusion defects may have been previously overlooked or underreported in the NF1 patient population.Item Editorial: Genetics and epigenetics of fetal alcohol spectrum disorders(2015-04) Mason, Stephen; Zhou, Feng C; Department of Anatomy and Cell Biology, IU School of MedicineItem Enhancement of osteoblastogenesis and suppression of osteoclastogenesis by inhibition of de-phosphorylation of eukaryotic translation initiation factor 2 alpha(Smart Science and Technology, LLC, 2015) Hamamura, Kazunori; Chen, Andy; Yokota, Hiroki; Department of Anatomy and Cell Biology, IU School of MedicineThe phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) is activated in response to various stresses such as viral infection, nutrient deprivation, and stress to the endoplasmic reticulum. Severe stress to the endoplasmic reticulum, for instance, induces an apoptotic pathway, while mild stress, on the contrary, leads to a pro-survival pathway. Little has been known about the elaborate role of eIF2α phosphorylation in the development of bone-forming osteoblasts and bone-resorbing osteoclasts. Using salubrinal and guanabenz as inhibitors of the de-phosphorylation of eIF2α, we have recently reported that the phosphorylation of eIF2α significantly alters fates of both osteoblasts and osteoclasts. Based on our recent findings, we review in this research highlight the potential mechanisms of the enhancement of osteoblastogenesis and the suppression of osteoclastogenesis through the elevated level of phosphorylated eIF2α.Item Group II metabotropic glutamate receptor type 2 allosteric potentiators prevent sodium lactate-induced panic-like response in panic-vulnerable rats(Sage Publications, 2013-02) Johnson, Philip L.; Fitz, Stephanie D.; Engleman, Eric A.; Svensson, Kjell A.; Schkeryantz, Jeffrey M.; Shekhar, Anantha; Department of Anatomy and Cell Biology, IU School of MedicineRats with chronic inhibition of GABA synthesis by infusion of l-allyglycine, a glutamic acid decarboxylase inhibitor, into their dorsomedial/perifornical hypothalamus are anxious and exhibit panic-like cardio-respiratory responses to treatment with intravenous (i.v.) sodium lactate (NaLac) infusions, in a manner similar to what occurs in patients with panic disorder. We previously showed that either NMDA receptor antagonists or metabotropic glutamate receptor type 2/3 receptor agonists can block such a NaLac response, suggesting that a glutamate mechanism is contributing to this panic-like state. Using this animal model of panic, we tested the efficacy of CBiPES and THIIC, which are selective group II metabotropic glutamate type 2 receptor allosteric potentiators (at 10-30 mg/kg i.p.), in preventing NaLac-induced panic-like behavioral and cardiovascular responses. The positive control was alprazolam (3mg/kg i.p.), a clinically effective anti-panic benzodiazepine. As predicted, panic-prone rats given a NaLac challenge displayed NaLac-induced panic-like cardiovascular (i.e. tachycardia and hypertensive) responses and "anxiety" (i.e. decreased social interaction time) and "flight" (i.e. increased locomotion) -associated behaviors; however, systemic injection of the panic-prone rats with CBiPES, THIIC or alprazolam prior to the NaLac dose blocked all NaLac-induced panic-like behaviors and cardiovascular responses. These data suggested that in a rat animal model, selective group II metabotropic glutamate type 2 receptor allosteric potentiators show an anti-panic efficacy similar to alprazolam.Item High-bone-mass causing mutant LRP5 receptors are resistant to endogenous inhibitors in vivo(Wiley Online Library, 2015-10) Niziolek, Paul J.; MacDonald, Bryan T.; Kedlaya, Rajendra; Zhang, Minjie; Bellido, Teresita; He, Xi; Warman, Matthew L.; Robling, Alexander G.; Department of Anatomy and Cell Biology, IU School of MedicineCertain missense mutations affecting LRP5 cause high bone mass (HBM) in humans. Based on in vitro evidence, HBM LRP5 receptors are thought to exert their effects by providing resistance to binding/inhibition of secreted LRP5 inhibitors such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). We previously reported the creation of two Lrp5 HBM knock-in mouse models, in which the human p.A214V or p.G171V missense mutations were knocked into the endogenous Lrp5 locus. To determine whether HBM knock-in mice are resistant to SOST- or DKK1-induced osteopenia, we bred Lrp5 HBM mice with transgenic mice that overexpress human SOST in osteocytes ((8kb) Dmp1-SOST) or mouse DKK1 in osteoblasts and osteocytes ((2.3kb) Col1a1-Dkk1). We observed that the (8kb) Dmp1-SOST transgene significantly lowered whole-body bone mineral density (BMD), bone mineral content (BMC), femoral and vertebral trabecular bone volume fraction (BV/TV), and periosteal bone-formation rate (BFR) in wild-type mice but not in mice with Lrp5 p.G171V and p.A214V alleles. The (2.3kb) Col1a1-Dkk1 transgene significantly lowered whole-body BMD, BMC, and vertebral BV/TV in wild-type mice and affected p.A214V mice more than p.G171V mice. These in vivo data support in vitro studies regarding the mechanism of HBM-causing mutations, and imply that HBM LRP5 receptors differ in their relative sensitivity to inhibition by SOST and DKK1.Item Improvement of cancellous bone microstructure in patients on teriparatide following alendronate pretreatment(Elsevier, 2016-08) Fahrleitner-Pammer, Astrid; Burr, David B.; Dobnig, Harald; Stepan, Jan J.; Petto, Helmut; Li, Jiliang; Krege, John H.; Pavo, Imre; Department of Anatomy and Cell Biology, IU School of MedicineAn increase in procollagen type I amino-terminal propeptide (PINP) early after teriparatide initiation was shown to correlate with increased lumbar spine areal BMD and is a good predictor of the anabolic response to teriparatide. Few data exist correlating PINP and bone microstructure, and no data exist in patients on teriparatide following prior potent antiresorptive treatment. This exploratory analysis aimed to investigate the effects of teriparatide on cancellous bone microstructure and correlations of bone markers with microstructure in alendronate-pretreated patients. This was a post hoc analysis of changes in bone markers and three-dimensional indices of bone microstructure in paired iliac crest biopsies from a prospective teriparatide treatment study in postmenopausal women with osteoporosis who were either treatment-naïve (TN, n = 16) or alendronate-pretreated (ALN, n = 29) at teriparatide initiation. Teriparatide (20 μg/day) was given for 24 months; biopsies were taken at baseline and endpoint, and serum concentrations of PINP and type 1 collagen cross-linked C-telopeptide (βCTX) were measured at intervals up to 24 months. In the TN and ALN groups, respectively, mean (SD) increases in three-dimensional bone volume/tissue volume were 105 (356)% (P = 0.039) and 55 (139)% (P < 0.005) and trabecular thickness 30.4 (30)% (P < 0.001) and 30.8 (53)% (P < 0.001). No significant changes were observed in trabecular number or separation. In the ALN patients, 3-month change of neither PINP nor βCTX correlated with indices of cancellous bone microstructure. However, 12-month changes in biochemical bone markers correlated significantly with improvements in bone volume/tissue volume, r = 0.502 (P < 0.01) and r = 0.378 (P < 0.05), trabecular number, r = 0.559 (P < 0.01) and r = 0.515 (P < 0.01), and reduction of trabecular separation, r = −0.432 (P < 0.05) and r = −0.530 (P < 0.01), for PINP and βCTX, respectively. We conclude that cancellous bone microstructure improved with teriparatide therapy irrespective of prior antiresorptive use.Item In vivo axial loading of the mouse tibia(Springer, 2015) Melville, Katherine M.; Robling, Alexander G.; van der Meulen, Marjolein C. H.; Department of Anatomy and Cell Biology, IU School of MedicineNoninvasive methods to apply controlled, cyclic loads to the living skeleton are used as anabolic procedures to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days.