- Browse by Author
Browsing by Author "Denizli, Merve"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Glucose intolerance as a consequence of hematopoietic stem cell dysfunction in offspring of obese mice(Elsevier, 2024) Denizli, Merve; Ropa, James; Beasley, Lindsay; Ghosh, Joydeep; DeVanna, Kelli; Spice, Taylor; Haneline, Laura S.; Capitano, Maegan; Kua, Kok Lim; Pediatrics, School of MedicineObjective: Maternal obesity is increasingly common and negatively impacts offspring health. Children of mothers with obesity are at higher risk of developing diseases linked to hematopoietic system abnormalities and metabolism such as type 2 diabetes. Interestingly, disease risks are often dependent on the offspring's sex, suggesting sex-specific reprogramming effect of maternal obesity on offspring hematopoietic stem and progenitor cell (HSPC) function. However, the impact of maternal obesity exposure on offspring HSPC function, and the capability of HSPC to regulate offspring metabolic health is largely understudied. This study aims to test the hypothesis that offspring of obese mice exhibit sex-differences in HSPC function that affect offspring's metabolic health. Methods: We first assessed bone marrow hematopoietic stem and progenitor cell phenotype using postnatal day 21 (P21) and 8-week-old C57BL/6J mice born to control and diet-induced obese dams. We also sorted HSPC (Lineage-, Sca1+, cKit + cells) from P21 mice for competitive primary and secondary transplant, as well as transcriptomic analysis. Body weight, adiposity, insulin tolerance test and glucose tolerance tests were performed in primary and secondary transplant recipient animals. Results: We discovered sex-differences in offspring HSPC function in response to maternal obesity exposure, where male offspring of obese dams (MatOb) showed decreased HSPC numbers and engraftment, while female MatOb offspring remained largely unaffected. RNA-seq revealed immune stimulatory pathways in female MatOb offspring. Finally, only recipients of male MatOb offspring HSPC exhibited glucose intolerance. Conclusions: This study demonstrated the lasting effect of maternal obesity exposure on offspring HSPC function and implicates HSPC in metabolic regulation.Item Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring(Frontiers, 2022-09) Denizli, Merve; Capitano, Maegan L.; Kua, Kok Lim; Pediatrics, School of MedicineThe prevalence of obesity is increasingly common in the United States, with ~25% of women of reproductive age being overweight or obese. Metaflammation, a chronic low grade inflammatory state caused by altered metabolism, is often present in pregnancies complicated by obesity. As a result, the fetuses of mothers who are obese are exposed to an in-utero environment that has altered nutrients and cytokines. Notably, both human and preclinical studies have shown that children born to mothers with obesity have higher risks of developing chronic illnesses affecting various organ systems. In this review, the authors sought to present the role of cytokines and inflammation during healthy pregnancy and determine how maternal obesity changes the inflammatory landscape of the mother, leading to fetal reprogramming. Next, the negative long-term impact on offspring’s health in numerous disease contexts, including offspring’s risk of developing neuropsychiatric disorders (autism, attention deficit and hyperactive disorder), metabolic diseases (obesity, type 2 diabetes), atopy, and malignancies will be discussed along with the potential of altered immune/inflammatory status in offspring as a contributor of these diseases. Finally, the authors will list critical knowledge gaps in the field of developmental programming of health and diseases in the context of offspring of mothers with obesity, particularly the understudied role of hematopoietic stem and progenitor cells.