- Browse by Author
Browsing by Author "Deng, Youping"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item 2K09 and thereafter : the coming era of integrative bioinformatics, systems biology and intelligent computing for functional genomics and personalized medicine research(BMC, 2010-11-29) Yang, Jack Y.; Niemierko, Andrzej; Bajcsy, Ruzena; Xu, Dong; Athey, Brian D.; Zhang, Aidong; Ersoy, Okan K.; Li, Guo-zheng; Borodovsky, Mark; Zhang, Joe C.; Arabnia, Hamid R.; Deng, Youping; Dunker, A. Keith; Liu, Yunlong; Ghafoor, Arif; Medicine, School of MedicineSignificant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Conferences on Bioinformatics, Systems Biology and Intelligent Computing (ISIBM IJCBS 2009) attracted more than 300 papers and 400 researchers and medical doctors world-wide. It was the only inter/multidisciplinary conference aimed to promote synergistic research and education in bioinformatics, systems biology and intelligent computing. The conference committee was very grateful for the valuable advice and suggestions from honorary chairs, steering committee members and scientific leaders including Dr. Michael S. Waterman (USC, Member of United States National Academy of Sciences), Dr. Chih-Ming Ho (UCLA, Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Wing H. Wong (Stanford, Member of United States National Academy of Sciences), Dr. Ruzena Bajcsy (UC Berkeley, Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Qu Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Andrzej Niemierko (Harvard), Dr. A. Keith Dunker (Indiana), Dr. Brian D. Athey (Michigan), Dr. Weida Tong (FDA, United States Department of Health and Human Services), Dr. Cathy H. Wu (Georgetown), Dr. Dong Xu (Missouri), Drs. Arif Ghafoor and Okan K Ersoy (Purdue), Dr. Mark Borodovsky (Georgia Tech, President of ISIBM), Dr. Hamid R. Arabnia (UGA, Vice-President of ISIBM), and other scientific leaders. The committee presented the 2009 ISIBM Outstanding Achievement Awards to Dr. Joydeep Ghosh (UT Austin), Dr. Aidong Zhang (Buffalo) and Dr. Zhi-Hua Zhou (Nanjing) for their significant contributions to the field of intelligent biological medicine.Item 3D Protein structure prediction with genetic tabu search algorithm(BMC, 2010-05-28) Zhang, Xiaolong; Wang, Ting; Luo, Huiping; Yang, Jack Y.; Deng, Youping; Tang, Jinshan; Yang, Mary Qu; Medicine, School of MedicineBackground Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively.Item Advances in translational bioinformatics facilitate revealing the landscape of complex disease mechanisms(Springer (Biomed Central Ltd.), 2014) Yang, Jack Y.; Dunker, A. Keith; Liu, Jun S.; Qin, Xiang; Arabnia, Hamid R.; Yang, William; Niemierko, Andrzej; Chen, Zhongxue; Luo, Zuojie; Wang, Liangjiang; Liu, Yunlong; Xu, Dong; Deng, Youping; Tong, Weida; Yang, Mary Qu; Department of Biochemistry and Molecular Biology, IU School of MedicineAdvances of high-throughput technologies have rapidly produced more and more data from DNAs and RNAs to proteins, especially large volumes of genome-scale data. However, connection of the genomic information to cellular functions and biological behaviours relies on the development of effective approaches at higher systems level. In particular, advances in RNA-Seq technology has helped the studies of transcriptome, RNA expressed from the genome, while systems biology on the other hand provides more comprehensive pictures, from which genes and proteins actively interact to lead to cellular behaviours and physiological phenotypes. As biological interactions mediate many biological processes that are essential for cellular function or disease development, it is important to systematically identify genomic information including genetic mutations from GWAS (genome-wide association study), differentially expressed genes, bidirectional promoters, intrinsic disordered proteins (IDP) and protein interactions to gain deep insights into the underlying mechanisms of gene regulations and networks. Furthermore, bidirectional promoters can co-regulate many biological pathways, where the roles of bidirectional promoters can be studied systematically for identifying co-regulating genes at interactive network level. Combining information from different but related studies can ultimately help revealing the landscape of molecular mechanisms underlying complex diseases such as cancer.Item Identification of genes and pathways involved in kidney renal clear cell carcinoma(Springer (Biomed Central Ltd.), 2014) Yang, William; Yoshigoe, Kenji; Qin, Xiang; Liu, Jun S.; Yang, Jack Y.; Niemierko, Andrzej; Deng, Youping; Liu, Yunlong; Dunker, A. Keith; Chen, Zhongxue; Wang, Liangjiang; Xu, Dong; Arabnia, Hamid R.; Tong, Weida; Yang, Mary Qu; Department of Medical and Molecular Genetics, IU School of MedicineBACKGROUND: Kidney Renal Clear Cell Carcinoma (KIRC) is one of fatal genitourinary diseases and accounts for most malignant kidney tumours. KIRC has been shown resistance to radiotherapy and chemotherapy. Like many types of cancers, there is no curative treatment for metastatic KIRC. Using advanced sequencing technologies, The Cancer Genome Atlas (TCGA) project of NIH/NCI-NHGRI has produced large-scale sequencing data, which provide unprecedented opportunities to reveal new molecular mechanisms of cancer. We combined differentially expressed genes, pathways and network analyses to gain new insights into the underlying molecular mechanisms of the disease development. RESULTS: Followed by the experimental design for obtaining significant genes and pathways, comprehensive analysis of 537 KIRC patients' sequencing data provided by TCGA was performed. Differentially expressed genes were obtained from the RNA-Seq data. Pathway and network analyses were performed. We identified 186 differentially expressed genes with significant p-value and large fold changes (P < 0.01, |log(FC)| > 5). The study not only confirmed a number of identified differentially expressed genes in literature reports, but also provided new findings. We performed hierarchical clustering analysis utilizing the whole genome-wide gene expressions and differentially expressed genes that were identified in this study. We revealed distinct groups of differentially expressed genes that can aid to the identification of subtypes of the cancer. The hierarchical clustering analysis based on gene expression profile and differentially expressed genes suggested four subtypes of the cancer. We found enriched distinct Gene Ontology (GO) terms associated with these groups of genes. Based on these findings, we built a support vector machine based supervised-learning classifier to predict unknown samples, and the classifier achieved high accuracy and robust classification results. In addition, we identified a number of pathways (P < 0.04) that were significantly influenced by the disease. We found that some of the identified pathways have been implicated in cancers from literatures, while others have not been reported in the cancer before. The network analysis leads to the identification of significantly disrupted pathways and associated genes involved in the disease development. Furthermore, this study can provide a viable alternative in identifying effective drug targets. CONCLUSIONS: Our study identified a set of differentially expressed genes and pathways in kidney renal clear cell carcinoma, and represents a comprehensive computational approach to analysis large-scale next-generation sequencing data. The pathway and network analyses suggested that information from distinctly expressed genes can be utilized in the identification of aberrant upstream regulators. Identification of distinctly expressed genes and altered pathways are important in effective biomarker identification for early cancer diagnosis and treatment planning. Combining differentially expressed genes with pathway and network analyses using intelligent computational approaches provide an unprecedented opportunity to identify upstream disease causal genes and effective drug targets.Item A new approach to construct pathway connected networks and its application in dose responsive gene expression profiles of rat liver regulated by 2,4DNT(BMC, 2010-12-01) Chowbina, Sudhir; Deng, Youping; Ai, Junmei; Wu, Xiaogang; Guan, Xin; Wilbanks, Mitchell S.; Escalon, Barbara Lynn; Meyer, Sharon A.; Perkins, Edward J.; Chen, Jake Yue; BioHealth Informatics, School of Informatics and ComputingMilitary and industrial activities have lead to reported release of 2,4-dinitrotoluene (2,4DNT) into soil, groundwater or surface water. It has been reported that 2,4DNT can induce toxic effects on humans and other organisms. However the mechanism of 2,4DNT induced toxicity is still unclear. Although a series of methods for gene network construction have been developed, few instances of applying such technology to generate pathway connected networks have been reported. Results Microarray analyses were conducted using liver tissue of rats collected 24h after exposure to a single oral gavage with one of five concentrations of 2,4DNT. We observed a strong dose response of differentially expressed genes after 2,4DNT treatment. The most affected pathways included: long term depression, breast cancer regulation by stathmin1, WNT Signaling; and PI3K signaling pathways. In addition, we propose a new approach to construct pathway connected networks regulated by 2,4DNT. We also observed clear dose response pathway networks regulated by 2,4DNT. Conclusions We developed a new method for constructing pathway connected networks. This new method was successfully applied to microarray data from liver tissue of 2,4DNT exposed animals and resulted in the identification of unique dose responsive biomarkers in regards to affected pathways.