ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Deng, Cheri X."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Resonant acoustic rheometry for assessing plasma coagulation in bleeding patients
    (Springer Nature, 2025-02-11) Li, Weiping; Bunch, Connor M.; Zackariya, Sufyan; Patel, Shivani S.; Buckner, Hallie; Condon, Shaun; Walsh, Matthew R.; Miller, Joseph B.; Walsh, Mark M.; Hall, Timothy L.; Jin, Jionghua; Stegemann, Jan P.; Deng, Cheri X.; Emergency Medicine, School of Medicine
    Disordered hemostasis associated with life-threatening hemorrhage commonly afflicts patients in the emergency department, critical care unit, and perioperative settings. Rapid and sensitive hemostasis phenotyping is needed to guide administration of blood components and hemostatic adjuncts to reverse aberrant hemostasis. Here, we report the use of resonant acoustic rheometry (RAR), a technique that quantifies the viscoelastic properties of soft biomaterials, for assessing plasma coagulation in a cohort of 38 bleeding patients admitted to the hospital. RAR captured the dynamic characteristics of plasma coagulation that were dependent on coagulation activators or reagent conditions. RAR coagulation parameters correlated with TEG reaction time and TEG functional fibrinogen, especially when stratified by comorbidities. A quadratic classifier trained on selective RAR parameters predicted transfusion of fresh frozen plasma and cryoprecipitate with modest to high overall accuracy. While these results demonstrate the feasibility of RAR for plasma coagulation and utility of a machine learning model, the relative small number of patients, especially the small number of patients who received transfusion, is a limitation of this study. Further studies are need to test a larger number of patients to further validate the capability of RAR as a cost-effective and sensitive hemostasis assay to obtain quantitative data to guide clinical-decision making in managing severely hemorrhaging patients.
  • Loading...
    Thumbnail Image
    Item
    Resonant Acoustic Rheometry to Measure Coagulation Kinetics in Hemophilia A and Healthy Plasma: A Novel Viscoelastic Method
    (Thieme, 2023) Li, Weiping; Hobson, Eric C.; Bunch, Connor M.; Miller, Joseph B.; Nehme, Jimmy; Kwaan, Hau C.; Walsh, Mark M.; McCurdy, Michael T.; Aversa, John G.; Thomas, Anthony V.; Zackariya, Nuha; Thomas, Samuel J.; Smith, Stephanie A.; Cook, Bernard C.; Boyd, Bryan; Stegemann, Jan P.; Deng, Cheri X.; Surgery, School of Medicine
    Compared with conventional coagulation tests and factor-specific assays, viscoelastic hemostatic assays (VHAs) can provide a more thorough evaluation of clot formation and lysis but have several limitations including clot deformation. In this proof-of-concept study, we test a noncontact technique, termed resonant acoustic rheometry (RAR), for measuring the kinetics of human plasma coagulation. Specifically, RAR utilizes a dual-mode ultrasound technique to induce and detect surface oscillation of blood samples without direct physical contact and measures the resonant frequency of the surface oscillation over time, which is reflective of the viscoelasticity of the sample. Analysis of RAR results of normal plasma allowed defining a set of parameters for quantifying coagulation. RAR detected a flat-line tracing of resonant frequency in hemophilia A plasma that was corrected with the addition of tissue factor. Our RAR results captured the kinetics of plasma coagulation and the newly defined RAR parameters correlated with increasing tissue factor concentration in both healthy and hemophilia A plasma. These findings demonstrate the feasibility of RAR as a novel approach for VHA, providing the foundation for future studies to compare RAR parameters to conventional coagulation tests, factor-specific assays, and VHA parameters.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University