- Browse by Author
Browsing by Author "Demyan, Scott M."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions(Wiley, 2023-07) Shrestha, Raj K.; Jacinthe, Pierre-Andre; Lal, Rattan; Lorenz, Klaus; Singh, Maninder P.; Demyan, Scott M.; Ren, Wei; Lindsey, Laura E.; Earth and Environmental Sciences, School of ScienceBiochar is one of the few nature-based technologies with potential to help achieve net-zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co-benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field-based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2O) by 18% and methane (CH4) by 3% but increased carbon dioxide (CO2) by 1.9%. When biochar was combined with N-fertilizer, it reduced CO2, CH4, and N2O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long-term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.