- Browse by Author
Browsing by Author "Delaplane, Sarah"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Base excision repair apurinic/apyrimidinic endonucleases in apicomplexan parasite Toxoplasma gondii(2011-05) Onyango, David O.; Naguleswaran, Arunasalam; Delaplane, Sarah; Reed, April; Kelley, Mark R.; Georgiadis, Millie M.; Sullivan, William J., Jr.DNA repair is essential for cell viability and proliferation. In addition to reactive oxygen produced as a byproduct of their own metabolism, intracellular parasites also have to manage oxidative stress generated as a defense mechanism by the host. The spontaneous loss of DNA bases due to hydrolysis and oxidative DNA damage in intracellular parasites is great, but little is known about the type of DNA repair machineries that exist in these early-branching eukaryotes. However, it is clear, processes similar to DNA base excision repair (BER) must exist to rectify spontaneous and host-mediated damage in Toxoplasma gondii. Here we report that T. gondii, an opportunistic protozoan pathogen, possesses two apurinic/apyrimidinic (AP) endonucleases that function in DNA BER. We characterize the enzymatic activities of Toxoplasma exonuclease III (ExoIII, or Ape1) and endonuclease IV (EndoIV, or Apn1), designated TgAPE and TgAPN, respectively. Over-expression of TgAPN in Toxoplasma conferred protection from DNA damage, and viable knockouts of TgAPN were not obtainable. We generated an inducible TgAPN knockdown mutant using a ligand-controlled destabilization domain to establish that TgAPN is critical for Toxoplasma to recover from DNA damage. The importance of TgAPN and the fact that humans lack any observable APN family activity highlights TgAPN as a promising candidate for drug development to treat toxoplasmosis.Item Evolution of the redox function in mammalian Apurinic/ apyrimidinic endonuclease(2008-08) Georgiadis, Millie M.; Luo, Meihua; Gaur, R K.; Delaplane, Sarah; Li, X.; Kelley, Mark R.Human apurinic/apyrimidinic endonuclease (hApe1) encodes two important functional activities: an essential base excision repair (BER) activity and a redox activity that regulates expression of a number of genes through reduction of their transcription factors, AP-1, NFκB, HIF-1α, CREB, p53 and others. The BER function is highly conserved from prokaryotes (E. coli exonuclease III) to humans (hApe1). Here, we provide evidence supporting a redox function unique to mammalian Apes. An evolutionary analysis of Ape sequences reveals that, of the 7 Cys residues, Cys 93, 99, 208, 296, and 310 are conserved in both mammalian and non-mammalian vertebrate Apes, while Cys 65 is unique to mammalian Apes. In the zebrafish Ape (zApe), selected as the vertebrate sequence most distant from human, the residue equivalent to Cys 65 is Thr 58. The wild-type zApe enzyme was tested for redox activity in both in vitro EMSA and transactivation assays and found to be inactive, similar to C65A hApe1. Substitution of Thr 58 with Cys in zApe, however, resulted in a redox active enzyme, suggesting that a Cys residue in this position is indeed critical for redox function. In order to further probe differences between redox active and inactive enzymes, we have determined the crystal structures of vertebrate redox inactive enzymes, the C65A human Ape1 enzyme and the zApe enzyme at 1.9 and 2.3 Å, respectively. Our results provide new insights on the redox function and highlight a dramatic gain-of-function activity for Ape1 in mammals not found in non-mammalian vertebrates or lower organisms.Item Functional Analysis of Novel Analogues of E3330 That Block the Redox Signaling Activity of the Multifunctional AP Endonuclease/Redox Signaling Enzyme APE1/Ref-1(2011-03) Kelley, Mark R.; Luo, Meihua; Reed, April; Su, Dian; Delaplane, Sarah; Borch, Richard F.; Nyland II, Rodney L.; Gross, Michael L.; Georgiadis, Millie M.APE1 is a multifunctional protein possessing DNA repair and redox activation of transcription factors. Blocking these functions leads to apoptosis, antiangiogenesis, cell-growth inhibition, and other effects, depending on which function is blocked. Because a selective inhibitor of the APE redox function has potential as a novel anticancer therapeutic, new analogues of E3330 were synthesized. Mass spectrometry was used to characterize the interactions of the analogues (RN8-51, 10-52, and 7-60) with APE1. RN10-52 and RN7-60 were found to react rapidly with APE1, forming covalent adducts, whereas RN8-51 reacted reversibly. Median inhibitory concentration (IC50 values of all three compounds were significantly lower than that of E3330. EMSA, transactivation assays, and endothelial tube growth-inhibition analysis demonstrated the specificity of E3330 and its analogues in blocking the APE1 redox function and demonstrated that the analogues had up to a sixfold greater effect than did E3330. Studies using cancer cell lines demonstrated that E3330 and one analogue, RN8-51, decreased the cell line growth with little apoptosis, whereas the third, RN7-60, caused a dramatic effect. RN8-51 shows particular promise for further anticancer therapeutic development. This progress in synthesizing and isolating biologically active novel E3330 analogues that effectively inhibit the APE1 redox function validates the utility of further translational anticancer therapeutic development.Item Interactions of APE1 with a redox inhibitor: Evidence for an alternate conformation of the enzyme(2011-01) Su, Dian; Delaplane, Sarah; Luo, Meihua; Rempel, Don L.; Vu, Bich; Kelley, Mark R.; Gross, Michael L.; Georgiadis, Millie M.Apurinic/apyrimidinic endonuclease (APE1) is an essential base excision repair protein that also functions as a reduction and oxidation (redox) factor in mammals. Through a thiol-based mechanism, APE1 reduces a number of important transcription factors, including AP-1, p53, NF-κB, and HIF-1α. What is known about the mechanism to date is that the buried residues Cys 65 and Cys 93 are critical for APE1’s redox activity. To further detail the redox mechanism, we developed a chemical footprinting−mass spectrometric assay using N-ethylmaleimide (NEM), an irreversible Cys modifier, to characterize the interaction of the redox inhibitor, E3330, with APE1. When APE1 was incubated with E3330, two NEM-modified products were observed, one with two and a second with seven added NEMs; this latter product corresponds to a fully modified APE1. In a similar control reaction without E3330, only the +2NEM product was observed in which the two solvent-accessible Cys residues, C99 and C138, were modified by NEM. Through hydrogen−deuterium amide exchange with analysis by mass spectrometry, we found that the +7NEM-modified species incorporates approximately 40 more deuterium atoms than the native protein, which exchanges nearly identically as the +2NEM product, suggesting that APE1 can be trapped in a partially unfolded state. E3330 was also found to increase the extent of disulfide bond formation involving redox critical Cys residues in APE1 as assessed by liquid chromatography and tandem mass spectrometry, suggesting a basis for its inhibitory effects on APE1’s redox activity. Collectively, our results suggest that APE1 adopts a partially unfolded state, which we propose is the redox active form of the enzyme.Item Role of the Multifunctional DNA Repair and Redox Signaling Protein Ape1/Ref-1 in Cancer and Endothelial Cells: Small-Molecule Inhibition of the Redox Function of Ape1(2008-09) Luo, Meihua; Delaplane, Sarah; Jiang, Aihua; Reed, April; He, Ying; Fishel, Melissa L.; Nyland II, Rodney L.; Borch, Richard F.; Qiao, Xiaoxi; Georgiadis, Millie M.; Kelley, Mark R.The DNA base excision-repair pathway is responsible for the repair of DNA damage caused by oxidation/alkylation and protects cells against the effects of endogenous and exogenous agents. Removal of the damaged base creates a baseless (AP) site. AP endonuclease1 (Ape1) acts on this site to continue the BER-pathway repair. Failure to repair baseless sites leads to DNA strand breaks and cytotoxicity. In addition to the repair role of Ape1, it also functions as a major redox-signaling factor to reduce and activate transcription factors such as AP1, p53, HIF-1α, and others that control the expression of genes important for cell survival and cancer promotion and progression. Thus, the Ape1 protein interacts with proteins involved in DNA repair, growth-signaling pathways, and pathways involved in tumor promotion and progression. Although knockdown studies with siRNA have been informative in studying the role of Ape1 in both normal and cancer cells, knocking down Ape1 does not reveal the individual role of the redox or repair functions of Ape1. The identification of small-molecule inhibitors of specific Ape1 functions is critical for mechanistic studies and translational applications. Here we discuss small-molecule inhibition of Ape1 redox and its effect on both cancer and endothelial cells.