- Browse by Author
Browsing by Author "Debinski, Waldemar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item TGLI1 transcription factor mediates breast cancer brain metastasis via activating metastasis-initiating cancer stem cells and astrocytes in the tumor microenvironment(Springer Nature, 2020-01) Sirkisoon, Sherona R.; Carpenter, Richard L.; Rimkus, Tadas; Doheny, Daniel; Zhu, Dongqin; Aguayo, Noah R.; Xing, Fei; Chan, Michael; Ruiz, Jimmy; Metheny-Barlow, Linda J.; Strowd, Roy; Lin, Jiayuh; Pasche, Boris; Debinski, Waldemar; Watabe, Kounosuke; Lo, Hui-Wen; Biochemistry and Molecular Biology, School of MedicineMechanisms for breast cancer metastasis remain unclear. Whether truncated glioma-associated oncogene homolog 1 (TGLI1), a transcription factor known to promote angiogenesis, migration and invasion, plays any role in metastasis of any tumor type has never been investigated. In this study, results of two mouse models of breast cancer metastasis showed that ectopic expression of TGLI1, but not GLI1, promoted preferential metastasis to the brain. Conversely, selective TGLI1 knockdown using antisense oligonucleotides led to decreased breast cancer brain metastasis (BCBM) in vivo. Immunohistochemical staining showed that TGLI1, but not GLI1, was increased in lymph node metastases compared to matched primary tumors, and that TGLI1 was expressed at higher levels in BCBM specimens compared to primary tumors. TGLI1 activation is associated with a shortened time to develop BCBM and enriched in HER2-enriched and triple-negative breast cancers. Radioresistant BCBM cell lines and specimens expressed higher levels of TGLI1, but not GLI1, than radiosensitive counterparts. Since cancer stem cells (CSCs) are radioresistant and metastasis-initiating cells, we examined TGLI1 for its involvement in breast CSCs and found TGLI1 to transcriptionally activate stemness genes CD44, Nanog, Sox2, and OCT4 leading to CSC renewal, and TGLI1 outcompetes with GLI1 for binding to target promoters. We next examined whether astrocyte-priming underlies TGLI1-mediated brain tropism and found that TGLI1-positive CSCs strongly activated and interacted with astrocytes in vitro and in vivo. These findings demonstrate, for the first time, that TGLI1 mediates breast cancer metastasis to the brain, in part, through promoting metastasis-initiating CSCs and activating astrocytes in BCBM microenvironment.Item β2-adrenoreceptor Signaling Increases Therapy Resistance in Prostate Cancer by Upregulating MCL1(American Association for Cancer Research, 2020-12) Hassan, Sazzad; Pullikuth, Ashok; Nelson, Kyle C.; Flores, Anabel; Karpova, Yelena; Baiz, Daniele; Zhu, Sinan; Sui, Guangchao; Huang, Yue; Choi, Young A.; D’Agostino, Ralph, Jr.; Hemal, Ashok; von Holzen, Urs; Debinski, Waldemar; Kulik, George; Medicine, School of MedicineThere is accumulating evidence that continuous activation of the sympathetic nervous system due to psychosocial stress increases resistance to therapy and accelerates tumor growth via β2-adrenoreceptor signaling (ADRB2). However, the effector mechanisms appear to be specific to tumor type. Here we show that activation of ADRB2 by epinephrine, increased in response to immobilization stress, delays the loss of MCL1 apoptosis regulator (MCL1) protein expression induced by cytotoxic drugs in prostate cancer cells; and thus, increases resistance of prostate cancer xenografts to cytotoxic therapies. The effect of epinephrine on MCL1 protein depended on protein kinase A (PKA) activity, but was independent from androgen receptor expression. Furthermore, elevated blood epinephrine levels correlated positively with an increased MCL1 protein expression in human prostate biopsies. In summary, we demonstrate that stress triggers an androgen-independent antiapoptotic signaling via the ADRB2/PKA/MCL1 pathway in prostate cancer cells. IMPLICATIONS: Presented results justify clinical studies of ADRB2 blockers as therapeutics and of MCL1 protein expression as potential biomarker predicting efficacy of apoptosis-targeting drugs in prostate cancer.