- Browse by Author
Browsing by Author "Davatzikos, Christos"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item A New Era of Data-Driven Cancer Research and Care: Opportunities and Challenges(American Association for Cancer Research, 2024) Gomez, Felicia; Danos, Arpad M.; Del Fiol, Guilherme; Madabhushi, Anant; Tiwari, Pallavi; McMichael, Joshua F.; Bakas, Spyridon; Bian, Jiang; Davatzikos, Christos; Fertig, Elana J.; Kalpathy-Cramer, Jayashree; Kenney, Johanna; Savova, Guergana K.; Yetisgen, Meliha; Van Allen, Eliezer M.; Warner, Jeremy L.; Prior, Fred; Griffith, Malachi; Griffith, Obi L.; Pathology and Laboratory Medicine, School of MedicinePeople diagnosed with cancer and their formal and informal caregivers are increasingly faced with a deluge of complex information, thanks to rapid advancements in the type and volume of diagnostic, prognostic, and treatment data. This commentary discusses the opportunities and challenges that the society faces as we integrate large volumes of data into regular cancer care.Item An interpretable Alzheimer's disease oligogenic risk score informed by neuroimaging biomarkers improves risk prediction and stratification(Frontiers Media, 2023-10-26) Suh, Erica H.; Lee, Garam; Jung, Sang-Hyuk; Wen, Zixuan; Bao, Jingxuan; Nho, Kwangsik; Huang, Heng; Davatzikos, Christos; Saykin, Andrew J.; Thompson, Paul M.; Shen, Li; Kim, Dokyoon; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: Stratification of Alzheimer's disease (AD) patients into risk subgroups using Polygenic Risk Scores (PRS) presents novel opportunities for the development of clinical trials and disease-modifying therapies. However, the heterogeneous nature of AD continues to pose significant challenges for the clinical broadscale use of PRS. PRS remains unfit in demonstrating sufficient accuracy in risk prediction, particularly for individuals with mild cognitive impairment (MCI), and in allowing feasible interpretation of specific genes or SNPs contributing to disease risk. We propose adORS, a novel oligogenic risk score for AD, to better predict risk of disease by using an optimized list of relevant genetic risk factors. Methods: Using whole genome sequencing data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 1,545), we selected 20 genes that exhibited the strongest correlations with FDG-PET and AV45-PET, recognized neuroimaging biomarkers that detect functional brain changes in AD. This subset of genes was incorporated into adORS to assess, in comparison to PRS, the prediction accuracy of CN vs. AD classification and MCI conversion prediction, risk stratification of the ADNI cohort, and interpretability of the genetic information included in the scores. Results: adORS improved AUC scores over PRS in both CN vs. AD classification and MCI conversion prediction. The oligogenic model also refined risk-based stratification, even without the assistance of APOE, thus reflecting the true prevalence rate of the ADNI cohort compared to PRS. Interpretation analysis shows that genes included in adORS, such as ATF6, EFCAB11, ING5, SIK3, and CD46, have been observed in similar neurodegenerative disorders and/or are supported by AD-related literature. Discussion: Compared to conventional PRS, adORS may prove to be a more appropriate choice of differentiating patients into high or low genetic risk of AD in clinical studies or settings. Additionally, the ability to interpret specific genetic information allows the focus to be shifted from general relative risk based on a given population to the information that adORS can provide for a single individual, thus permitting the possibility of personalized treatments for AD.Item Bile acid synthesis, modulation, and dementia: A metabolomic, transcriptomic, and pharmacoepidemiologic study(PLOS, 2021-05-27) Varma, Vijay R.; Wang, Youjin; An, Yang; Varma, Sudhir; Bilgel, Murat; Doshi, Jimit; Legido-Quigley, Cristina; Delgado, João C.; Oommen, Anup M.; Roberts, Jackson A.; Wong, Dean F.; Davatzikos, Christos; Resnick, Susan M.; Troncoso, Juan C.; Pletnikova, Olga; O’Brien, Richard; Hak, Eelko; Baak, Brenda N.; Pfeiffer, Ruth; Baloni, Priyanka; Mohmoudiandehkordi, Siamak; Nho, Kwangsik; Kaddurah-Daouk, Rima; Bennett, David A.; Gadalla, Shahinaz M.; Thambisetty, Madhav; Radiology and Imaging Sciences, School of MedicineBackground: While Alzheimer disease (AD) and vascular dementia (VaD) may be accelerated by hypercholesterolemia, the mechanisms underlying this association are unclear. We tested whether dysregulation of cholesterol catabolism, through its conversion to primary bile acids (BAs), was associated with dementia pathogenesis. Methods and findings: We used a 3-step study design to examine the role of the primary BAs, cholic acid (CA), and chenodeoxycholic acid (CDCA) as well as their principal biosynthetic precursor, 7α-hydroxycholesterol (7α-OHC), in dementia. In Step 1, we tested whether serum markers of cholesterol catabolism were associated with brain amyloid accumulation, white matter lesions (WMLs), and brain atrophy. In Step 2, we tested whether exposure to bile acid sequestrants (BAS) was associated with risk of dementia. In Step 3, we examined plausible mechanisms underlying these findings by testing whether brain levels of primary BAs and gene expression of their principal receptors are altered in AD. Step 1: We assayed serum concentrations CA, CDCA, and 7α-OHC and used linear regression and mixed effects models to test their associations with brain amyloid accumulation (N = 141), WMLs, and brain atrophy (N = 134) in the Baltimore Longitudinal Study of Aging (BLSA). The BLSA is an ongoing, community-based cohort study that began in 1958. Participants in the BLSA neuroimaging sample were approximately 46% male with a mean age of 76 years; longitudinal analyses included an average of 2.5 follow-up magnetic resonance imaging (MRI) visits. We used the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 1,666) to validate longitudinal neuroimaging results in BLSA. ADNI is an ongoing, community-based cohort study that began in 2003. Participants were approximately 55% male with a mean age of 74 years; longitudinal analyses included an average of 5.2 follow-up MRI visits. Lower serum concentrations of 7α-OHC, CA, and CDCA were associated with higher brain amyloid deposition (p = 0.041), faster WML accumulation (p = 0.050), and faster brain atrophy mainly (false discovery rate [FDR] p = <0.001-0.013) in males in BLSA. In ADNI, we found a modest sex-specific effect indicating that lower serum concentrations of CA and CDCA were associated with faster brain atrophy (FDR p = 0.049) in males.Step 2: In the Clinical Practice Research Datalink (CPRD) dataset, covering >4 million registrants from general practice clinics in the United Kingdom, we tested whether patients using BAS (BAS users; 3,208 with ≥2 prescriptions), which reduce circulating BAs and increase cholesterol catabolism, had altered dementia risk compared to those on non-statin lipid-modifying therapies (LMT users; 23,483 with ≥2 prescriptions). Patients in the study (BAS/LMT) were approximately 34%/38% male and with a mean age of 65/68 years; follow-up time was 4.7/5.7 years. We found that BAS use was not significantly associated with risk of all-cause dementia (hazard ratio (HR) = 1.03, 95% confidence interval (CI) = 0.72-1.46, p = 0.88) or its subtypes. We found a significant difference between the risk of VaD in males compared to females (p = 0.040) and a significant dose-response relationship between BAS use and risk of VaD (p-trend = 0.045) in males.Step 3: We assayed brain tissue concentrations of CA and CDCA comparing AD and control (CON) samples in the BLSA autopsy cohort (N = 29). Participants in the BLSA autopsy cohort (AD/CON) were approximately 50%/77% male with a mean age of 87/82 years. We analyzed single-cell RNA sequencing (scRNA-Seq) data to compare brain BA receptor gene expression between AD and CON samples from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort (N = 46). ROSMAP is an ongoing, community-based cohort study that began in 1994. Participants (AD/CON) were approximately 56%/36% male with a mean age of 85/85 years. In BLSA, we found that CA and CDCA were detectable in postmortem brain tissue samples and were marginally higher in AD samples compared to CON. In ROSMAP, we found sex-specific differences in altered neuronal gene expression of BA receptors in AD. Study limitations include the small sample sizes in the BLSA cohort and likely inaccuracies in the clinical diagnosis of dementia subtypes in primary care settings. Conclusions: We combined targeted metabolomics in serum and amyloid positron emission tomography (PET) and MRI of the brain with pharmacoepidemiologic analysis to implicate dysregulation of cholesterol catabolism in dementia pathogenesis. We observed that lower serum BA concentration mainly in males is associated with neuroimaging markers of dementia, and pharmacological lowering of BA levels may be associated with higher risk of VaD in males. We hypothesize that dysregulation of BA signaling pathways in the brain may represent a plausible biologic mechanism underlying these results. Together, our observations suggest a novel mechanism relating abnormalities in cholesterol catabolism to risk of dementia.Item Brain-wide genome-wide colocalization study for integrating genetics, transcriptomics and brain morphometry in Alzheimer’s disease(Elsevier, 2023) Bao, Jingxuan; Wen, Junhao; Wen, Zixuan; Yang, Shu; Cui, Yuhan; Yang, Zhijian; Erus, Guray; Saykin, Andrew J.; Long, Qi; Davatzikos, Christos; Shen, Li; Radiology and Imaging Sciences, School of MedicineAlzheimer’s disease (AD) is one of the most common neurodegenerative diseases. However, the AD mechanism has not yet been fully elucidated to date, hindering the development of effective therapies. In our work, we perform a brain imaging genomics study to link genetics, single-cell gene expression data, tissue-specific gene expression data, brain imaging-derived volumetric endophenotypes, and disease diagnosis to discover potential underlying neurobiological pathways for AD. To do so, we perform brain-wide genome-wide colocalization analyses to integrate multidimensional imaging genomic biobank data. Specifically, we use (1) the individual-level imputed genotyping data and magnetic resonance imaging (MRI) data from the UK Biobank, (2) the summary statistics of the genome-wide association study (GWAS) from multiple European ancestry cohorts, and (3) the tissue-specific cis-expression quantitative trait loci (cis-eQTL) summary statistics from the GTEx project. We apply a Bayes factor colocalization framework and mediation analysis to these multi-modal imaging genomic data. As a result, we derive the brain regional level GWAS summary statistics for 145 brain regions with 482,831 single nucleotide polymorphisms (SNPs) followed by posthoc functional annotations. Our analysis yields the discovery of a potential AD causal pathway from a systems biology perspective: the SNP chr10:124165615:G>A (rs6585827) mutation upregulates the expression of BTBD16 gene in oligodendrocytes, a specialized glial cells, in the brain cortex, leading to a reduced risk of volumetric loss in the entorhinal cortex, resulting in the protective effect on AD. We substantiate our findings with multiple evidence from existing imaging, genetic and genomic studies in AD literature. Our study connects genetics, molecular and cellular signatures, regional brain morphologic endophenotypes, and AD diagnosis, providing new insights into the mechanistic understanding of the disease. Our findings can provide valuable guidance for subsequent therapeutic target identification and drug discovery in AD.Item Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression(American Medical Association, 2022) Wen, Junhao; Fu, Cynthia H. Y.; Tosun, Duygu; Veturi, Yogasudha; Yang, Zhijian; Abdulkadir, Ahmed; Mamourian, Elizabeth; Srinivasan, Dhivya; Skampardoni, Ioanna; Singh, Ashish; Nawani, Hema; Bao, Jingxuan; Erus, Guray; Shou, Haochang; Habes, Mohamad; Doshi, Jimit; Varol, Erdem; Mackin, R. Scott; Sotiras, Aristeidis; Fan, Yong; Saykin, Andrew J.; Sheline, Yvette I.; Shen, Li; Ritchie, Marylyn D.; Wolk, David A.; Albert, Marilyn; Resnick, Susan M.; Davatzikos, Christos; iSTAGING consortium; ADNI; BIOCARD; BLSA; Radiology and Imaging Sciences, School of MedicineImportance: Late-life depression (LLD) is characterized by considerable heterogeneity in clinical manifestation. Unraveling such heterogeneity might aid in elucidating etiological mechanisms and support precision and individualized medicine. Objective: To cross-sectionally and longitudinally delineate disease-related heterogeneity in LLD associated with neuroanatomy, cognitive functioning, clinical symptoms, and genetic profiles. Design, setting, and participants: The Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) study is an international multicenter consortium investigating brain aging in pooled and harmonized data from 13 studies with more than 35 000 participants, including a subset of individuals with major depressive disorder. Multimodal data from a multicenter sample (N = 996), including neuroimaging, neurocognitive assessments, and genetics, were analyzed in this study. A semisupervised clustering method (heterogeneity through discriminative analysis) was applied to regional gray matter (GM) brain volumes to derive dimensional representations. Data were collected from July 2017 to July 2020 and analyzed from July 2020 to December 2021. Main outcomes and measures: Two dimensions were identified to delineate LLD-associated heterogeneity in voxelwise GM maps, white matter (WM) fractional anisotropy, neurocognitive functioning, clinical phenotype, and genetics. Results: A total of 501 participants with LLD (mean [SD] age, 67.39 [5.56] years; 332 women) and 495 healthy control individuals (mean [SD] age, 66.53 [5.16] years; 333 women) were included. Patients in dimension 1 demonstrated relatively preserved brain anatomy without WM disruptions relative to healthy control individuals. In contrast, patients in dimension 2 showed widespread brain atrophy and WM integrity disruptions, along with cognitive impairment and higher depression severity. Moreover, 1 de novo independent genetic variant (rs13120336; chromosome: 4, 186387714; minor allele, G) was significantly associated with dimension 1 (odds ratio, 2.35; SE, 0.15; P = 3.14 ×108) but not with dimension 2. The 2 dimensions demonstrated significant single-nucleotide variant-based heritability of 18% to 27% within the general population (N = 12 518 in UK Biobank). In a subset of individuals having longitudinal measurements, those in dimension 2 experienced a more rapid longitudinal change in GM and brain age (Cohen f2 = 0.03; P = .02) and were more likely to progress to Alzheimer disease (Cohen f2 = 0.03; P = .03) compared with those in dimension 1 (N = 1431 participants and 7224 scans from the Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], and Biomarkers for Older Controls at Risk for Dementia [BIOCARD] data sets). Conclusions and relevance: This study characterized heterogeneity in LLD into 2 dimensions with distinct neuroanatomical, cognitive, clinical, and genetic profiles. This dimensional approach provides a potential mechanism for investigating the heterogeneity of LLD and the relevance of the latent dimensions to possible disease mechanisms, clinical outcomes, and responses to interventions.Item Distance-weighted Sinkhorn loss for Alzheimer's disease classification(Elsevier, 2024-02-12) Wang, Zexuan; Zhan, Qipeng; Tong, Boning; Yang, Shu; Hou, Bojian; Huang, Heng; Saykin, Andrew J.; Thompson, Paul M.; Davatzikos, Christos; Shen, Li; Radiology and Imaging Sciences, School of MedicineTraditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified training sample without adequately considering its distance from the ground truth class distribution in the feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this observation, we propose a penalty called distance-weighted Sinkhorn (DWS) loss. For each mis-classified training sample (with predicted label A and true label B), its contribution to the DWS loss positively correlates to the distance the training sample needs to travel to reach the ground truth distribution of all the A samples. We apply the DWS framework with a neural network to classify different stages of Alzheimer's disease. Our empirical results demonstrate that the DWS framework outperforms the traditional neural network loss functions and is comparable or better to traditional machine learning methods, highlighting its potential in biomedical informatics and data science.Item Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimer's disease continuum(Springer Nature, 2024-10-05) Wen, Junhao; Yang, Zhijian; Nasrallah, Ilya M.; Cui, Yuhan; Erus, Guray; Srinivasan, Dhivya; Abdulkadir, Ahmed; Mamourian, Elizabeth; Hwang, Gyujoon; Singh, Ashish; Bergman, Mark; Bao, Jingxuan; Varol, Erdem; Zhou, Zhen; Boquet-Pujadas, Aleix; Chen, Jiong; Toga, Arthur W.; Saykin, Andrew J.; Hohman, Timothy J.; Thompson, Paul M.; Villeneuve, Sylvia; Gollub, Randy; Sotiras, Aristeidis; Wittfeld, Katharina; Grabe, Hans J.; Tosun, Duygu; Bilgel, Murat; An, Yang; Marcus, Daniel S.; LaMontagne, Pamela; Benzinger, Tammie L.; Heckbert, Susan R.; Austin, Thomas R.; Launer, Lenore J.; Espeland, Mark; Masters, Colin L.; Maruff, Paul; Fripp, Jurgen; Johnson, Sterling C.; Morris, John C.; Albert, Marilyn S.; Bryan, R. Nick; Resnick, Susan M.; Ferrucci, Luigi; Fan, Yong; Habes, Mohamad; Wolk, David; Shen, Li; Shou, Haochang; Davatzikos, Christos; Radiology and Imaging Sciences, School of MedicineAlzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .Item Genomic loci influence patterns of structural covariance in the human brain(National Academy of Science, 2023) Wen, Junhao; Nasrallah, Ilya M.; Abdulkadir, Ahmed; Satterthwaite, Theodore D.; Yang, Zhijian; Erus, Guray; Robert-Fitzgerald, Timothy; Singh, Ashish; Sotiras, Aristeidis; Boquet-Pujadas, Aleix; Mamourian, Elizabeth; Doshi, Jimit; Cui, Yuhan; Srinivasan, Dhivya; Skampardoni, Ioanna; Chen, Jiong; Hwang, Gyujoon; Bergman, Mark; Bao, Jingxuan; Veturi, Yogasudha; Zhou, Zhen; Yang, Shu; Dazzan, Paola; Kahn, Rene S.; Schnack, Hugo G.; Zanetti, Marcus V.; Meisenzahl, Eva; Busatto, Geraldo F.; Crespo-Facorro, Benedicto; Pantelis, Christos; Wood, Stephen J.; Zhuo, Chuanjun; Shinohara, Russell T.; Gur, Ruben C.; Gur, Raquel E.; Koutsouleris, Nikolaos; Wolf, Daniel H.; Saykin, Andrew J.; Ritchie, Marylyn D.; Shen, Li; Thompson, Paul M.; Colliot, Olivier; Wittfeld, Katharina; Grabe, Hans J.; Tosun, Duygu; Bilgel, Murat; An, Yang; Marcus, Daniel S.; LaMontagne, Pamela; Heckbert, Susan R.; Austin, Thomas R.; Launer, Lenore J.; Espeland, Mark; Masters, Colin L.; Maruff, Paul; Fripp, Jurgen; Johnson, Sterling C.; Morris, John C.; Albert, Marilyn S.; Bryan, R. Nick; Resnick, Susan M.; Fan, Yong; Habes, Mohamad; Wolk, David; Shou, Haochang; Davatzikos, Christos; Radiology and Imaging Sciences, School of MedicineNormal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.Item Identifying highly heritable brain amyloid phenotypes through mining Alzheimer's imaging and sequencing biobank data(World Scientific, 2022) Bao, Jingxuan; Wen, Zixuan; Kim, Mansu; Zhao, Xiwen; Lee, Brian N.; Jung, Sang-Hyuk; Davatzikos, Christos; Saykin, Andrew J.; Thompson, Paul M.; Kim, Dokyoon; Zhao, Yize; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineBrain imaging genetics, an emerging and rapidly growing research field, studies the relationship between genetic variations and brain imaging quantitative traits (QTs) to gain new insights into the phenotypic characteristics and genetic mechanisms of the brain. Heritability is an important measurement to quantify the proportion of the observed variance in an imaging QT that is explained by genetic factors, and can often be used to prioritize brain QTs for subsequent imaging genetic association studies. Most existing studies define regional imaging QTs using predefined brain parcellation schemes such as the automated anatomical labeling (AAL) atlas. However, the power to dissect genetic underpinnings under QTs defined in such an unsupervised fashion could be negatively affected by heterogeneity within the regions in the partition. To bridge this gap, we propose a novel method to define highly heritable brain regions. Based on voxelwise heritability estimates, we extract brain regions containing spatially connected voxels with high heritability. We perform an empirical study on the amyloid imaging and whole genome sequencing data from a landmark Alzheimer’s disease biobank; and demonstrate the regions defined by our method have much higher estimated heritabilities than the regions defined by the AAL atlas. Our proposed method refines the imaging endophenotype constructions in light of their genetic dissection, and yields more powerful imaging QTs for subsequent detection of genetic risk factors along with better interpretability.Item Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization(Elsevier, 2023) Hu, Fengling; Chen, Andrew A.; Horng, Hannah; Bashyam, Vishnu; Davatzikos, Christos; Alexander-Bloch, Aaron; Li, Mingyao; Shou, Haochang; Satterthwaite, Theodore D.; Yu, Meichen; Shinohara, Russell T.; Radiology and Imaging Sciences, School of MedicineMagnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.