- Browse by Author
Browsing by Author "Darling, John A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Purine Salvage Pathways in the Apicomplexan Parasite Toxoplasma gondii(Elsevier, 2004) Chaudhary, Kshitiz; Darling, John A.; Fohl, Leah M.; Sullivan, William J., Jr.; Donald, Robert G. K.; Pfefferkorn, Elmer R.; Ullman, Buddy; Roos, David S.; Pharmacology and Toxicology, School of MedicineWe have exploited a variety of molecular genetic, biochemical, and genomic techniques to investigate the roles of purine salvage enzymes in the protozoan parasite Toxoplasma gondii. The ability to generate defined genetic knockouts and target transgenes to specific loci demonstrates that T. gondii uses two (and only two) pathways for purine salvage, defined by the enzymes hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK). Both HXGPRT and AK are single-copy genes, and either one can be deleted, indicating that either one of these pathways is sufficient to meet parasite purine requirements. Fitness defects suggest both pathways are important for the parasite, however, and that the salvage of adenosine is more important than salvage of hypoxanthine and other purine nucleobases. HXGPRT and AK cannot be deleted simultaneously unless one of these enzymes is provided in trans, indicating that alternative routes of functionally significant purine salvage are lacking. Despite previous reports to the contrary, we found no evidence of adenine phosphoribosyltransferase (APRT) activity when parasites were propagated in APRT-deficient host cells, and no APRT ortholog is evident in the T. gondii genome. Expression of Leishmania donovani APRT in transgenic T. gondii parasites yielded low levels of activity but did not permit genetic deletion of both HXGPRT and AK. A detailed comparative genomic study of the purine salvage pathway in various apicomplexan species highlights important differences among these parasites.Item Recombinant expression, purification, and characterization of Toxoplasma gondii adenosine kinase(Elsevier, 1999) Darling, John A.; Sullivan, William J., Jr.; Carter, Darrick; Ullman, Buddy; Roos, David S.Toxoplasma gondii lacks the capacity to synthesize purines de novo, and adenosine kinase (AK)-mediated phosphorylation of salvaged adenosine provides the major route of purine acquisition by this parasite. T. gondii AK thus represents a promising target for rational design of antiparasitic compounds. In order to further our understanding of this therapeutically relevant enzyme, an AK cDNA from T. gondii was overexpressed in E. coli using the pBAce expression system, and the recombinant protein was purified to apparent homogeneity using conventional protein purification techniques. Kinetic analysis of TgAK revealed Km values of 1.9 microM for adenosine and 54.4 microM for ATP, with a k(cat) of 26.1 min(-1). Other naturally occurring purine nucleosides, nucleobases, and ribose did not significantly inhibit adenosine phosphorylation, but inhibition was observed using certain purine nucleoside analogs. Adenine arabinoside (AraA), 4-nitrobenzylthioinosine (NBMPR), and 7-deazaadenosine (tubercidin) were all shown to be substrates of T. gondii AK. Transgenic AK knock-out parasites were resistant to these compounds in cell culture assays, consistent with their proposed action as subversive substrates in vivo.