- Browse by Author
Browsing by Author "Dakna, Mohammed"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A proteogenomic view of Parkinson's disease causality and heterogeneity(Springer Nature, 2023-02-11) Kaiser, Sergio; Zhang, Luqing; Mollenhauer, Brit; Jacob, Jaison; Longerich, Simonne; Del-Aguila, Jorge; Marcus, Jacob; Raghavan, Neha; Stone, David; Fagboyegun, Olumide; Galasko, Douglas; Dakna, Mohammed; Bilican, Bilada; Dovlatyan, Mary; Kostikova, Anna; Li, Jingyao; Peterson, Brant; Rotte, Michael; Sanz, Vinicius; Foroud, Tatiana; Hutten, Samantha J.; Frasier, Mark; Iwaki, Hirotaka; Singleton, Andrew; Marek, Ken; Crawford, Karen; Elwood, Fiona; Messa, Mirko; Serrano-Fernandez, Pablo; Medical and Molecular Genetics, School of MedicineThe pathogenesis and clinical heterogeneity of Parkinson’s disease (PD) have been evaluated from molecular, pathophysiological, and clinical perspectives. High-throughput proteomic analysis of cerebrospinal fluid (CSF) opened new opportunities for scrutinizing this heterogeneity. To date, this is the most comprehensive CSF-based proteomics profiling study in PD with 569 patients (350 idiopathic patients, 65 GBA + mutation carriers and 154 LRRK2 + mutation carriers), 534 controls, and 4135 proteins analyzed. Combining CSF aptamer-based proteomics with genetics we determined protein quantitative trait loci (pQTLs). Analyses of pQTLs together with summary statistics from the largest PD genome wide association study (GWAS) identified 68 potential causal proteins by Mendelian randomization. The top causal protein, GPNMB, was previously reported to be upregulated in the substantia nigra of PD patients. We also compared the CSF proteomes of patients and controls. Proteome differences between GBA + patients and unaffected GBA + controls suggest degeneration of dopaminergic neurons, altered dopamine metabolism and increased brain inflammation. In the LRRK2 + subcohort we found dysregulated lysosomal degradation, altered alpha-synuclein processing, and neurotransmission. Proteome differences between idiopathic patients and controls suggest increased neuroinflammation, mitochondrial dysfunction/oxidative stress, altered iron metabolism and potential neuroprotection mediated by vasoactive substances. Finally, we used proteomic data to stratify idiopathic patients into “endotypes”. The identified endotypes show differences in cognitive and motor disease progression based on previously reported protein-based risk scores.Our findings not only contribute to the identification of new therapeutic targets but also to shape personalized medicine in CNS neurodegeneration.Item Biomarkers of neurodegeneration and glial activation validated in Alzheimer’s disease assessed in longitudinal cerebrospinal fluid samples of Parkinson’s disease(PLOS, 2021-10-07) Bartl, Michael; Dakna, Mohammed; Galasko, Douglas; Hutten, Samantha J.; Foroud, Tatiana; Quan, Marian; Marek, Kenneth; Siderowf, Andrew; Franz, Jonas; Trenkwalder, Claudia; Mollenhauer, Brit; Medical and Molecular Genetics, School of MedicineAim: Several pathophysiological processes are involved in Parkinson's disease (PD) and could inform in vivo biomarkers. We assessed an established biomarker panel, validated in Alzheimer's Disease, in a PD cohort. Methods: Longitudinal cerebrospinal fluid (CSF) samples from PPMI (252 PD, 115 healthy controls, HC) were analyzed at six timepoints (baseline, 6, 12, 24, 36, and 48 months follow-up) using Elecsys® electrochemiluminescence immunoassays to quantify neurofilament light chain (NfL), soluble TREM2 receptor (sTREM2), chitinase-3-like protein 1 (YKL40), glial fibrillary acidic protein (GFAP), interleukin-6 (IL-6), S100, and total α-synuclein (αSyn). Results: αSyn was significantly lower in PD (mean 103 pg/ml vs. HC: 127 pg/ml, p<0.01; area under the curve [AUC]: 0.64), while all other biomarkers were not significantly different (AUC NfL: 0.49, sTREM2: 0.54, YKL40: 0.57, GFAP: 0.55, IL-6: 0.53, S100: 0.54, p>0.05) and none showed a significant difference longitudinally. We found significantly higher levels of all these markers between PD patients who developed cognitive decline during follow-up, except for αSyn and IL-6. Conclusion: Except for αSyn, the additional biomarkers did not differentiate PD and HC, and none showed longitudinal differences, but most markers predict cognitive decline in PD during follow-up.Item Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson’s Disease Progression(Wiley, 2020-11) Mollenhauer, Brit; Dakna, Mohammed; Kruse, Niels; Galasko, Douglas; Foroud, Tatiana; Zetterberg, Henrik; Schade, Sebastian; Gera, Roland G.; Wang, Wenting; Gao, Feng; Frasier, Mark; Chahine, Lana M.; Coffey, Christopher S.; Singleton, Andrew B.; Simuni, Tanya; Weintraub, Daniel; Seibyl, John; Toga, Arthur W.; Tanner, Caroline M.; Kieburtz, Karl; Marek, Kenneth; Siderowf, Andrew; Cedarbaum, Jesse M.; Hutten, Samantha J.; Trenkwalder, Claudia; Graham, Danielle; Medical and Molecular Genetics, School of MedicineBackground: The objective of this study was to assess neurofilament light chain as a Parkinson's disease biomarker. Methods: We quantified neurofilament light chain in 2 independent cohorts: (1) longitudinal cerebrospinal fluid samples from the longitudinal de novo Parkinson's disease cohort and (2) a large longitudinal cohort with serum samples from Parkinson's disease, other cognate/neurodegenerative disorders, healthy controls, prodromal conditions, and mutation carriers. Results: In the Parkinson's Progression Marker Initiative cohort, mean baseline serum neurofilament light chain was higher in Parkinson's disease patients (13 ± 7.2 pg/mL) than in controls (12 ± 6.7 pg/mL), P = 0.0336. Serum neurofilament light chain increased longitudinally in Parkinson's disease patients versus controls (P < 0.01). Motor scores were positively associated with neurofilament light chain, whereas some cognitive scores showed a negative association. Conclusions: Neurofilament light chain in serum samples is increased in Parkinson's disease patients versus healthy controls, increases over time and with age, and correlates with clinical measures of Parkinson's disease severity. Although the specificity of neurofilament light chain for Parkinson's disease is low, it is the first blood-based biomarker candidate that could support disease stratification of Parkinson's disease versus other cognate/neurodegenerative disorders, track clinical progression, and possibly assess responsiveness to neuroprotective treatments. However, use of neurofilament light chain as a biomarker of response to neuroprotective interventions remains to be assessed.