ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dabin, Luke Child"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effects of SPI1-mediated transcriptome remodeling on Alzheimer's disease-related phenotypes in mouse models of Aβ amyloidosis
    (Springer Nature, 2024-05-11) Kim, Byungwook; Dabin, Luke Child; Tate, Mason Douglas; Karahan, Hande; Sharify, Ahmad Daniel; Acri, Dominic J.; Al-Amin, Md Mamun; Philtjens, Stéphanie; Smith, Daniel Curtis; Wijeratne, H. R. Sagara; Park, Jung Hyun; Jucker, Mathias; Kim, Jungsu; Medical and Molecular Genetics, School of Medicine
    SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-β (Aβ) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University