- Browse by Author
Browsing by Author "Da Mesquita, Sandro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference(Wiley, 2025) Kloske, Courtney M.; Mahinrad, Simin; Barnum, Christopher J.; Batista, Andre F.; Bradshaw, Elizabeth M.; Butts, Brittany; Carrillo, Maria C.; Chakrabarty, Paramita; Chen, Xiaoying; Craft, Suzanne; Da Mesquita, Sandro; Dabin, Luke C.; Devanand, Davangere; Duran-Laforet, Violeta; Elyaman, Wassim; Evans, Elizabeth E.; Fitzgerald-Bocarsly, Patricia; Foley, Kate E.; Harms, Ashley S.; Heneka, Michael T.; Hong, Soyon; Huang, Yu-Wen A.; Jackvony, Stephanie; Lai, Laijun; Le Guen, Yann; Lemere, Cynthia A.; Liddelow, Shane A.; Martin-Peña, Alfonso; Orr, Anna G.; Quintana, Francisco J.; Ramey, Grace D.; Rexach, Jessica E.; Rizzo, Stacey J. S.; Sexton, Claire; Tang, Alice S.; Torrellas, Jose G.; Tsai, Andy P.; van Olst, Lynn; Walker, Keenan A.; Wharton, Whitney; Tansey, Malú Gámez; Wilcock, Donna M.; Medical and Molecular Genetics, School of MedicineThe immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.Item Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy(Springer Nature, 2021) Da Mesquita, Sandro; Papadopoulos, Zachary; Dykstra, Taitea; Brase, Logan; Farias, Fabiana Geraldo; Wall, Morgan; Jiang, Hong; Kodira, Chinnappa Dilip; de Lima, Kalil Alves; Herz, Jasmin; Louveau, Antoine; Goldman, Dylan H.; Salvador, Andrea Francesca; Onengut-Gumuscu, Suna; Farber, Emily; Dabhi, Nisha; Kennedy, Tatiana; Milam, Mary Grace; Baker, Wendy; Smirnov, Igor; Rich, Stephen S.; Dominantly Inherited Alzheimer Network; Benitez, Bruno A.; Karch, Celeste M.; Perrin, Richard J.; Farlow, Martin; Chhatwal, Jasmeer P.; Holtzman, David M.; Cruchaga, Carlos; Harari, Oscar; Kipnis, Jonathan; Neurology, School of MedicineAlzheimer's disease (AD) is the most prevalent cause of dementia1. Although there is no effective treatment for AD, passive immunotherapy with monoclonal antibodies against amyloid beta (Aβ) is a promising therapeutic strategy2,3. Meningeal lymphatic drainage has an important role in the accumulation of Aβ in the brain4, but it is not known whether modulation of meningeal lymphatic function can influence the outcome of immunotherapy in AD. Here we show that ablation of meningeal lymphatic vessels in 5xFAD mice (a mouse model of amyloid deposition that expresses five mutations found in familial AD) worsened the outcome of mice treated with anti-Aβ passive immunotherapy by exacerbating the deposition of Aβ, microgliosis, neurovascular dysfunction, and behavioural deficits. By contrast, therapeutic delivery of vascular endothelial growth factor C improved clearance of Aβ by monoclonal antibodies. Notably, there was a substantial overlap between the gene signature of microglia from 5xFAD mice with impaired meningeal lymphatic function and the transcriptional profile of activated microglia from the brains of individuals with AD. Overall, our data demonstrate that impaired meningeal lymphatic drainage exacerbates the microglial inflammatory response in AD and that enhancement of meningeal lymphatic function combined with immunotherapies could lead to better clinical outcomes.