- Browse by Author
Browsing by Author "Curtis, Courtney"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Effects of GSK3-β Inhibitors on Wnt Signaling in Zebrafish Fin Regeneration: Chemical Biology(2014-04-11) Brannick, Angelica; Mahin, Jennifer L.; Farrel, Mark; Curtis, Courtney; Sarmah, Swapnalee; Collins, Kayla; Chu, Shaoyou; Sato, Mas; Sanchez-Felix, ManuelIn order to develop beneficial drugs for osteoporosis it is important to understand the molecular mechanisms of bone regeneration and define specific regulatory factors. Zebrafish can regenerate damaged tissues, and they prove to be a good model to study bone growth and repair. Previous research showed that GSK3β inhibitor compound at various concentrations and for different treatment periods effectively stimulated fin regeneration. Conducted experiments identified temporal and spatial fluctuations on individual gene markers after GSK3β inhibitor treatment at various concentrations. Recent analyzed data uses the Lilly Research Labs experimental compound LSN 2105786 at 3 nM and 5 nM to stimulate tissue regeneration to determine whether activating Wnt signaling produces cell proliferation and β-catenin translocation to the nucleus for zebrafish bone regeneration. This research has potential to identify mechanism of bone growth and repair, leading to more suitable drugs for patients suffering with osteoporosis.Item The Glycogen Synthase Kinase-3β Inhibitor LSN 2105786 Promotes Zebrafish Fin Regeneration(MDPI, 2019-04-19) Sarmah, Swapnalee; Curtis, Courtney; Mahin, Jennifer; Farrell, Mark; Engler, Thomas A.; Sanchez-Felix, Manuel V.; Sato, Masahiko; Ma, Yanfai Linda; Chu, Shaoyou; Marrs, James A.; Biology, School of ScienceThe Wnt pathway has been shown to regulate bone homeostasis and to influence some bone disease states. We utilized a zebrafish model system to study the effects of a synthetic, orally bioavailable glycogen synthase kinase-3β (GSK3β) inhibitor LSN 2105786, which activates Wnt signaling during bone healing and embryogenesis. GSK3β inhibitor treatment was used to phenocopy GSK3β morpholino oligonucleotide (MO) knockdown in zebrafish embryos. Human and zebrafish synthetic mRNA injection were similarly effective at rescue of GSK3β MO knockdown. During caudal fin regeneration, bony rays are the first structure to differentiate in zebrafish fins, providing a useful model to study bone healing. Caudal fin regeneration experiments were conducted using various concentrations of a GSK3β inhibitor, examining duration and concentration dependence on regenerative outgrowth. Experiments revealed continuous low concentration (4-5 nM) treatment to be more effective at increasing regeneration than intermittent dosing. Higher concentrations inhibited fin growth, perhaps by excessive stimulation of differentiation programs. Increased Wnt responsive gene expression and differentiation were observed in response to GSK3b inhibitor treatment. Activating Wnt signaling also increased cell proliferation and osteoblast differentiation in fin regenerates. Together, these data indicate that bone healing in zebrafish fin regeneration was improved by activating Wnt signaling using GSK3b inhibitor treatment. In addition, caudal fin regeneration is useful to evaluate dose-dependent pharmacological efficacy in bone healing, various dosing regimens and possible toxicological effects of compounds.Item Wnt Signaling in Zebrafish Fin Regeneration: Chemical Biology Using GSK3b Inhibitors(Office of the Vice Chancellor for Research, 2013-04-05) Curtis, Courtney; Sarmah, Swapnalee; Collins, Kayla; Chu, Shaoyou; Sato, Mas; Sanchez-Felix, Manuel; Marrs, James A.Bone growth can be impaired due to disease, such as osteoporosis, and Wnt signaling pathways regulate bone growth. The parathyroid hormone (PTH) is therapeutic for anabolic bone growth (bone building), which activates Wnt signaling, leading to bone growth. GSK3b (glycogen synthetase kinase 3 beta) protein inhibitors activate Wnt signaling, including in bone growth models. Our study utilized a zebrafish model system to study Wnt activated fin regeneration and bone growth. Wnt signaling is the first genetically identified step in fin regeneration, and bony rays are the main differentiated cell type in fins. Thus, zebrafish fin regeneration may be a useful model to study Wnt signaling mediated bone growth. Fin regeneration experiments were conducted using various concentrations of GSK3b inhibitor compound for different treatment periods and regenerative outgrowth was measured at 4 and 7 days post amputation. Experiments revealed continuous low concentration (5-6 nM) treatment to be most effective at increasing regeneration. Higher concentrations inhibited fin growth, perhaps by excessive stimulation of differentiation programs. In situ hybridization experiments were performed to examine effects of Gsk3b inhibitor on Wnt responsive gene expression. Initial experiments show temporal and spatial changes on individual gene markers following GSK3b inhibitor treatment. Additionally, confocal microscopy and immunofluorescence labeling data indicated that the Wnt signaling intracellular signal transducer, betacatenin, accumulates throughout Gsk3b inhibitor treated tissues. Finally, experiments are underway to quantify phosphohistone-3 staining in regenerating tissue to measure effects of Gsk3b inhibitor on cell proliferation. Together, these data indicate that bone growth in zebrafish fin regeneration is improved by activating Wnt signaling. Zebrafish Wnt signaling experiments provide good model to study bone growth and bone repair mechanisms, and may provide an efficient drug discovery platform.