- Browse by Author
Browsing by Author "Cui, Changpeng"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Anticancer Peptides Derived from Aldolase A and Induced Tumor-Suppressing Cells Inhibit Pancreatic Ductal Adenocarcinoma Cells(MDPI, 2023-10-11) Cui, Changpeng; Huo, Qingji; Xiong, Xue; Li, Kexin; Fishel, Melissa L.; Li, Baiyan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyPDAC (pancreatic ductal adenocarcinoma) is a highly aggressive malignant tumor. We have previously developed induced tumor-suppressing cells (iTSCs) that secrete a group of tumor-suppressing proteins. Here, we examined a unique procedure to identify anticancer peptides (ACPs), using trypsin-digested iTSCs-derived protein fragments. Among the 10 ACP candidates, P04 (IGEHTPSALAIMENANVLAR) presented the most efficient anti-PDAC activities. P04 was derived from aldolase A (ALDOA), a glycolytic enzyme. Extracellular ALDOA, as well as P04, was predicted to interact with epidermal growth factor receptor (EGFR), and P04 downregulated oncoproteins such as Snail and Src. Importantly, P04 has no inhibitory effect on mesenchymal stem cells (MSCs). We also generated iTSCs by overexpressing ALDOA in MSCs and peripheral blood mononuclear cells (PBMCs). iTSC-derived conditioned medium (CM) inhibited the progression of PDAC cells as well as PDAC tissue fragments. The inhibitory effect of P04 was additive to that of CM and chemotherapeutic drugs such as 5-Flu and gemcitabine. Notably, applying mechanical vibration to PBMCs elevated ALDOA and converted PBMCs into iTSCs. Collectively, this study presented a unique procedure for selecting anticancer P04 from ALDOA in an iTSCs-derived proteome for the treatment of PDAC.Item Electrical Stimulation Generates Induced Tumor-Suppressing Cells, Offering a Potential Option for Combatting Breast Cancer and Bone Metastasis(MDPI, 2025-01-25) Cui, Changpeng; Xu, Yinzhi; Xiong, Xue; Aryal, Uma K.; Chen, Andy; Chien, Stanley; You, Lidan; Li, Baiyan; Yokota, Hiroki; Medical and Molecular Genetics, School of MedicineTreating advanced metastatic cancer, particularly with bone metastasis, remains a significant challenge. In previous studies, induced tumor-suppressing (iTS) cells were successfully generated through genetic, chemical, and mechanical interventions. This study investigates the potential of electrical stimulation to generate iTS cells. Using a custom electrical stimulator with platinum electrodes, mesenchymal stem cells (MSCs) and Jurkat T cells were stimulated under optimized conditions (50 mV/cm, 10-100 Hz, 1 h). Conditioned medium (CM) from electrically stimulated cells demonstrated tumor-suppressing capabilities, inhibiting tumor cell migration, 3D spheroid growth, and cancer tissue fragment viability. Additionally, the CM reduced osteoclast maturation while promoting osteoblast differentiation. Proteomic analysis revealed enrichment of tumor-suppressing proteins, including histone H4, in the CM. Functional studies identified Piezo1 as a key mediator, as its knockdown significantly impaired the tumor-suppressive effects. Mechanistically, the process was distinct from other methods, such as mechanical vibration, with SUN1 inhibition showing no effect on iTS cell generation by electrical stimulation. These findings demonstrate the efficacy of electrical stimulation in enhancing the antitumor capabilities of MSCs and T cells, offering a novel approach to cancer therapy. Further exploration of this strategy could provide valuable insights into developing new treatments for metastatic cancer.Item Enhancing anti-tumor potential: low-intensity vibration suppresses osteosarcoma progression and augments MSCs' tumor-suppressive abilities(2024) Xiong, Xue; Huo, Qingji; Li, Kexin; Cui, Changpeng; Chang, Chunyi; Park, Charles; Ku, BonHeon; Hong, Chin-Suk; Lim, HeeChang; Pandya, Pankita H.; Saadatzadeh, M. Reza; Bijangi-Vishehsaraei, Khadijeh; Lin, Chien-Chi; Kacena, Melissa A.; Pollok, Karen E.; Chen, Andy; Liu, Jing; Thompson, William R.; Li, Xue-Lian; Li, Bai-Yan; Yokota, Hiroki; Health Sciences, School of Health and Human SciencesRationale: Osteosarcoma (OS), a common malignant bone tumor, calls for the investigation of novel treatment strategies. Low-intensity vibration (LIV) presents itself as a promising option, given its potential to enhance bone health and decrease cancer susceptibility. This research delves into the effects of LIV on OS cells and mesenchymal stem cells (MSCs), with a primary focus on generating induced tumor-suppressing cells (iTSCs) and tumor-suppressive conditioned medium (CM). Methods: To ascertain the influence of vibration frequency, we employed numerical simulations and conducted experiments to determine the most effective LIV conditions. Subsequently, we generated iTSCs and CM through LIV exposure and assessed the impact of CM on OS cells. We also explored the underlying mechanisms of the tumor-suppressive effects of LIV-treated MSC CM, with a specific focus on vinculin (VCL). We employed cytokine array, RNA sequencing, and Western blot techniques to investigate alterations in cytokine profiles, transcriptomes, and tumor suppressor proteins. Results: Numerical simulations validated LIV frequencies within the 10-100 Hz range. LIV induced notable morphological changes in OS cells and MSCs, confirming its dual role in inhibiting OS cell progression and promoting MSC conversion into iTSCs. Upregulated VCL expression enhanced MSC responsiveness to LIV, significantly bolstering CM's efficacy. Notably, we identified tumor suppressor proteins in LIV-treated CM, including procollagen C endopeptidase enhancer (PCOLCE), histone H4 (H4), peptidylprolyl isomerase B (PPIB), and aldolase A (ALDOA). Consistently, cytokine levels decreased significantly in LIV-treated mouse femurs, and oncogenic transcript levels were downregulated in LIV-treated OS cells. Moreover, our study demonstrated that combining LIV-treated MSC CM with chemotherapy drugs yielded additive anti-tumor effects. Conclusions: LIV effectively impeded the progression of OS cells and facilitated the transformation of MSCs into iTSCs. Notably, iTSC-derived CM demonstrated robust anti-tumor properties and the augmentation of MSC responsiveness to LIV via VCL. Furthermore, the enrichment of tumor suppressor proteins within LIV-treated MSC CM and the reduction of cytokines within LIV-treated isolated bone underscore the pivotal tumor-suppressive role of LIV within the bone tumor microenvironment.Item Enhancing anti-tumor potential: low-intensity vibration suppresses osteosarcoma progression and augments MSCs' tumor-suppressive abilities(Ivyspring, 2024-01-27) Xiong, Xue; Huo, Qingji; Li, Kexin; Cui, Changpeng; Chang, Chunyi; Park, Charles; Ku, BonHeon; Hong, Chin-Suk; Lim, HeeChang; Pandya, Pankita H.; Saadatzadeh, M. Reza; Bijangi-Vishehsaraei, Khadijeh; Lin, Chien-Chi; Kacena, Melissa A.; Pollok, Karen E.; Chen, Andy; Liu, Jing; Thompson, William R.; Li, Xue-Lian; Li, Bai-Yan; Yokota, Hiroki; Anatomy, Cell Biology and Physiology, School of MedicineRationale: Osteosarcoma (OS), a common malignant bone tumor, calls for the investigation of novel treatment strategies. Low-intensity vibration (LIV) presents itself as a promising option, given its potential to enhance bone health and decrease cancer susceptibility. This research delves into the effects of LIV on OS cells and mesenchymal stem cells (MSCs), with a primary focus on generating induced tumor-suppressing cells (iTSCs) and tumor-suppressive conditioned medium (CM). Methods: To ascertain the influence of vibration frequency, we employed numerical simulations and conducted experiments to determine the most effective LIV conditions. Subsequently, we generated iTSCs and CM through LIV exposure and assessed the impact of CM on OS cells. We also explored the underlying mechanisms of the tumor-suppressive effects of LIV-treated MSC CM, with a specific focus on vinculin (VCL). We employed cytokine array, RNA sequencing, and Western blot techniques to investigate alterations in cytokine profiles, transcriptomes, and tumor suppressor proteins. Results: Numerical simulations validated LIV frequencies within the 10-100 Hz range. LIV induced notable morphological changes in OS cells and MSCs, confirming its dual role in inhibiting OS cell progression and promoting MSC conversion into iTSCs. Upregulated VCL expression enhanced MSC responsiveness to LIV, significantly bolstering CM's efficacy. Notably, we identified tumor suppressor proteins in LIV-treated CM, including procollagen C endopeptidase enhancer (PCOLCE), histone H4 (H4), peptidylprolyl isomerase B (PPIB), and aldolase A (ALDOA). Consistently, cytokine levels decreased significantly in LIV-treated mouse femurs, and oncogenic transcript levels were downregulated in LIV-treated OS cells. Moreover, our study demonstrated that combining LIV-treated MSC CM with chemotherapy drugs yielded additive anti-tumor effects. Conclusions: LIV effectively impeded the progression of OS cells and facilitated the transformation of MSCs into iTSCs. Notably, iTSC-derived CM demonstrated robust anti-tumor properties and the augmentation of MSC responsiveness to LIV via VCL. Furthermore, the enrichment of tumor suppressor proteins within LIV-treated MSC CM and the reduction of cytokines within LIV-treated isolated bone underscore the pivotal tumor-suppressive role of LIV within the bone tumor microenvironment.Item P18: Novel Anticancer Peptide from Induced Tumor-Suppressing Cells Targeting Breast Cancer and Bone Metastasis(MDPI, 2024-06-15) Cui, Changpeng; Huo, Qingji; Xiong, Xue; Na, Sungsoo; Mitsuda, Masaru; Minami, Kazumasa; Li, Baiyan; Yokota, Hiroki; Anatomy, Cell Biology and Physiology, School of MedicineBackground: The skeletal system is a common site for metastasis from breast cancer. In our prior work, we developed induced tumor-suppressing cells (iTSCs) capable of secreting a set of tumor-suppressing proteins. In this study, we examined the possibility of identifying anticancer peptides (ACPs) from trypsin-digested protein fragments derived from iTSC proteomes. Methods: The efficacy of ACPs was examined using an MTT-based cell viability assay, a Scratch-based motility assay, an EdU-based proliferation assay, and a transwell invasion assay. To evaluate the mechanism of inhibitory action, a fluorescence resonance energy transfer (FRET)-based GTPase activity assay and a molecular docking analysis were conducted. The efficacy of ACPs was also tested using an ex vivo cancer tissue assay and a bone microenvironment assay. Results: Among the 12 ACP candidates, P18 (TDYMVGSYGPR) demonstrated the most effective anticancer activity. P18 was derived from Arhgdia, a Rho GDP dissociation inhibitor alpha, and exhibited inhibitory effects on the viability, migration, and invasion of breast cancer cells. It also hindered the GTPase activity of RhoA and Cdc42 and downregulated the expression of oncoproteins such as Snail and Src. The inhibitory impact of P18 was additive when it was combined with chemotherapeutic drugs such as Cisplatin and Taxol in both breast cancer cells and patient-derived tissues. P18 had no inhibitory effect on mesenchymal stem cells but suppressed the maturation of RANKL-stimulated osteoclasts and mitigated the bone loss associated with breast cancer. Furthermore, the P18 analog modified by N-terminal acetylation and C-terminal amidation (Ac-P18-NH2) exhibited stronger tumor-suppressor effects. Conclusions: This study introduced a unique methodology for selecting an effective ACP from the iTSC secretome. P18 holds promise for the treatment of breast cancer and the prevention of bone destruction by regulating GTPase signaling.