ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cui, Yuhan"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A genetically informed brain atlas for enhancing brain imaging genomics
    (Springer Nature, 2025-04-14) Bao, Jingxuan; Wen, Junhao; Chang, Changgee; Mu, Shizhuo; Chen, Jiong; Shivakumar, Manu; Cui, Yuhan; Erus, Guray; Yang, Zhijian; Yang, Shu; Wen, Zixuan; The Alzheimer’s Disease Neuroimaging Initiative; Zhao, Yize; Kim, Dokyoon; Duong-Tran, Duy; Saykin, Andrew J.; Zhao, Bingxin; Davatzikos, Christos; Long, Qi; Shen, Li; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Brain imaging genomics has manifested considerable potential in illuminating the genetic determinants of human brain structure and function. This has propelled us to develop the GIANT (Genetically Informed brAiN aTlas) that accounts for genetic and neuroanatomical variations simultaneously. Integrating voxel-wise heritability and spatial proximity, GIANT clusters brain voxels into genetically informed regions, while retaining fundamental anatomical knowledge. Compared to conventional (non-genetics) brain atlases, GIANT exhibits smaller intra-region variations and larger inter-region variations in terms of voxel-wise heritability. As a result, GIANT yields increased regional SNP heritability, enhanced polygenicity, and its polygenic risk score explains more brain volumetric variation than traditional neuroanatomical brain atlases. We provide extensive validation to GIANT and demonstrate its neuroanatomical validity, confirming its generalizability across populations with diverse genetic ancestries and various brain conditions. Furthermore, we present a comprehensive genetic architecture of the GIANT regions, covering their functional annotation at the molecular levels, their associations with other complex traits/diseases, and the genetic and phenotypic correlations among GIANT-defined imaging endophenotypes. In summary, GIANT constitutes a brain atlas that captures the complexity of genetic and neuroanatomical heterogeneity, thereby enhancing the discovery power and applicability of imaging genomics investigations in biomedical science.
  • Loading...
    Thumbnail Image
    Item
    Brain-wide genome-wide colocalization study for integrating genetics, transcriptomics and brain morphometry in Alzheimer’s disease
    (Elsevier, 2023) Bao, Jingxuan; Wen, Junhao; Wen, Zixuan; Yang, Shu; Cui, Yuhan; Yang, Zhijian; Erus, Guray; Saykin, Andrew J.; Long, Qi; Davatzikos, Christos; Shen, Li; Radiology and Imaging Sciences, School of Medicine
    Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases. However, the AD mechanism has not yet been fully elucidated to date, hindering the development of effective therapies. In our work, we perform a brain imaging genomics study to link genetics, single-cell gene expression data, tissue-specific gene expression data, brain imaging-derived volumetric endophenotypes, and disease diagnosis to discover potential underlying neurobiological pathways for AD. To do so, we perform brain-wide genome-wide colocalization analyses to integrate multidimensional imaging genomic biobank data. Specifically, we use (1) the individual-level imputed genotyping data and magnetic resonance imaging (MRI) data from the UK Biobank, (2) the summary statistics of the genome-wide association study (GWAS) from multiple European ancestry cohorts, and (3) the tissue-specific cis-expression quantitative trait loci (cis-eQTL) summary statistics from the GTEx project. We apply a Bayes factor colocalization framework and mediation analysis to these multi-modal imaging genomic data. As a result, we derive the brain regional level GWAS summary statistics for 145 brain regions with 482,831 single nucleotide polymorphisms (SNPs) followed by posthoc functional annotations. Our analysis yields the discovery of a potential AD causal pathway from a systems biology perspective: the SNP chr10:124165615:G>A (rs6585827) mutation upregulates the expression of BTBD16 gene in oligodendrocytes, a specialized glial cells, in the brain cortex, leading to a reduced risk of volumetric loss in the entorhinal cortex, resulting in the protective effect on AD. We substantiate our findings with multiple evidence from existing imaging, genetic and genomic studies in AD literature. Our study connects genetics, molecular and cellular signatures, regional brain morphologic endophenotypes, and AD diagnosis, providing new insights into the mechanistic understanding of the disease. Our findings can provide valuable guidance for subsequent therapeutic target identification and drug discovery in AD.
  • Loading...
    Thumbnail Image
    Item
    Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimer's disease continuum
    (Springer Nature, 2024-10-05) Wen, Junhao; Yang, Zhijian; Nasrallah, Ilya M.; Cui, Yuhan; Erus, Guray; Srinivasan, Dhivya; Abdulkadir, Ahmed; Mamourian, Elizabeth; Hwang, Gyujoon; Singh, Ashish; Bergman, Mark; Bao, Jingxuan; Varol, Erdem; Zhou, Zhen; Boquet-Pujadas, Aleix; Chen, Jiong; Toga, Arthur W.; Saykin, Andrew J.; Hohman, Timothy J.; Thompson, Paul M.; Villeneuve, Sylvia; Gollub, Randy; Sotiras, Aristeidis; Wittfeld, Katharina; Grabe, Hans J.; Tosun, Duygu; Bilgel, Murat; An, Yang; Marcus, Daniel S.; LaMontagne, Pamela; Benzinger, Tammie L.; Heckbert, Susan R.; Austin, Thomas R.; Launer, Lenore J.; Espeland, Mark; Masters, Colin L.; Maruff, Paul; Fripp, Jurgen; Johnson, Sterling C.; Morris, John C.; Albert, Marilyn S.; Bryan, R. Nick; Resnick, Susan M.; Ferrucci, Luigi; Fan, Yong; Habes, Mohamad; Wolk, David; Shen, Li; Shou, Haochang; Davatzikos, Christos; Radiology and Imaging Sciences, School of Medicine
    Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .
  • Loading...
    Thumbnail Image
    Item
    Genomic loci influence patterns of structural covariance in the human brain
    (National Academy of Science, 2023) Wen, Junhao; Nasrallah, Ilya M.; Abdulkadir, Ahmed; Satterthwaite, Theodore D.; Yang, Zhijian; Erus, Guray; Robert-Fitzgerald, Timothy; Singh, Ashish; Sotiras, Aristeidis; Boquet-Pujadas, Aleix; Mamourian, Elizabeth; Doshi, Jimit; Cui, Yuhan; Srinivasan, Dhivya; Skampardoni, Ioanna; Chen, Jiong; Hwang, Gyujoon; Bergman, Mark; Bao, Jingxuan; Veturi, Yogasudha; Zhou, Zhen; Yang, Shu; Dazzan, Paola; Kahn, Rene S.; Schnack, Hugo G.; Zanetti, Marcus V.; Meisenzahl, Eva; Busatto, Geraldo F.; Crespo-Facorro, Benedicto; Pantelis, Christos; Wood, Stephen J.; Zhuo, Chuanjun; Shinohara, Russell T.; Gur, Ruben C.; Gur, Raquel E.; Koutsouleris, Nikolaos; Wolf, Daniel H.; Saykin, Andrew J.; Ritchie, Marylyn D.; Shen, Li; Thompson, Paul M.; Colliot, Olivier; Wittfeld, Katharina; Grabe, Hans J.; Tosun, Duygu; Bilgel, Murat; An, Yang; Marcus, Daniel S.; LaMontagne, Pamela; Heckbert, Susan R.; Austin, Thomas R.; Launer, Lenore J.; Espeland, Mark; Masters, Colin L.; Maruff, Paul; Fripp, Jurgen; Johnson, Sterling C.; Morris, John C.; Albert, Marilyn S.; Bryan, R. Nick; Resnick, Susan M.; Fan, Yong; Habes, Mohamad; Wolk, David; Shou, Haochang; Davatzikos, Christos; Radiology and Imaging Sciences, School of Medicine
    Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.
  • Loading...
    Thumbnail Image
    Item
    Preference Matrix Guided Sparse Canonical Correlation Analysis for Genetic Study of Quantitative Traits in Alzheimer’s Disease
    (IEEE, 2022-12) Sha, Jiahang; Bao, Jingxuan; Liu, Kefei; Yang, Shu; Wen, Zixuan; Cui, Yuhan; Wen, Junhao; Davatzikos, Christos; Moore, Jason H.; Saykin, Andrew J.; Long, Qi; Shen, Li; Radiology and Imaging Sciences, School of Medicine
    Investigating the relationship between genetic variation and phenotypic traits is a key issue in quantitative genetics. Specifically for Alzheimer’s disease, the association between genetic markers and quantitative traits remains vague while, once identified, will provide valuable guidance for the study and development of genetic-based treatment approaches. Currently, to analyze the association of two modalities, sparse canonical correlation analysis (SCCA) is commonly used to compute one sparse linear combination of the variable features for each modality, giving a pair of linear combination vectors in total that maximizes the cross-correlation between the analyzed modalities. One drawback of the plain SCCA model is that the existing findings and knowledge cannot be integrated into the model as priors to help extract interesting correlation as well as identify biologically meaningful genetic and phenotypic markers. To bridge this gap, we introduce preference matrix guided SCCA (PM-SCCA) that not only takes priors encoded as a preference matrix but also maintains computational simplicity. A simulation study and a real-data experiment are conducted to investigate the effectiveness of the model. Both experiments demonstrate that the proposed PM-SCCA model can capture not only genotype-phenotype correlation but also relevant features effectively.
  • Loading...
    Thumbnail Image
    Item
    Preference Matrix Guided Sparse Canonical Correlation Analysis for Mining Brain Imaging Genetic Associations in Alzheimer’s Disease
    (Elsevier, 2023) Sha, Jiahang; Bao, Jingxuan; Liu, Kefei; Yang, Shu; Wen, Zixuan; Wen, Junhao; Cui, Yuhan; Tong, Boning; Moore, Jason H.; Saykin, Andrew J.; Davatzikos, Christos; Long, Qi; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of Medicine
    Investigating the relationship between genetic variation and phenotypic traits is a key issue in quantitative genetics. Specifically for Alzheimer's disease, the association between genetic markers and quantitative traits remains vague while, once identified, will provide valuable guidance for the study and development of genetics-based treatment approaches. Currently, to analyze the association of two modalities, sparse canonical correlation analysis (SCCA) is commonly used to compute one sparse linear combination of the variable features for each modality, giving a pair of linear combination vectors in total that maximizes the cross-correlation between the analyzed modalities. One drawback of the plain SCCA model is that the existing findings and knowledge cannot be integrated into the model as priors to help extract interesting correlations as well as identify biologically meaningful genetic and phenotypic markers. To bridge this gap, we introduce preference matrix guided SCCA (PM-SCCA) that not only takes priors encoded as a preference matrix but also maintains computational simplicity. A simulation study and a real-data experiment are conducted to investigate the effectiveness of the model. Both experiments demonstrate that the proposed PM-SCCA model can capture not only genotype-phenotype correlation but also relevant features effectively.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University