- Browse by Author
Browsing by Author "Cuccaro, Michael L."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item A genome-wide search for pleiotropy in more than 100,000 harmonized longitudinal cognitive domain scores(BMC, 2023-06-22) Kang, Moonil; Ang, Ting Fang Alvin; Devine, Sherral A.; Sherva, Richard; Mukherjee, Shubhabrata; Trittschuh, Emily H.; Gibbons, Laura E.; Scollard, Phoebe; Lee, Michael; Choi, Seo-Eun; Klinedinst, Brandon; Nakano, Connie; Dumitrescu, Logan C.; Durant, Alaina; Hohman, Timothy J.; Cuccaro, Michael L.; Saykin, Andrew J.; Kukull, Walter A.; Bennett, David A.; Wang, Li-San; Mayeux, Richard P.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Schellenberg, Gerard D.; Crane, Paul K.; Au, Rhoda; Lunetta, Kathryn L.; Mez, Jesse B.; Farrer, Lindsay A.; Radiology and Imaging Sciences, School of MedicineBackground: More than 75 common variant loci account for only a portion of the heritability for Alzheimer's disease (AD). A more complete understanding of the genetic basis of AD can be deduced by exploring associations with AD-related endophenotypes. Methods: We conducted genome-wide scans for cognitive domain performance using harmonized and co-calibrated scores derived by confirmatory factor analyses for executive function, language, and memory. We analyzed 103,796 longitudinal observations from 23,066 members of community-based (FHS, ACT, and ROSMAP) and clinic-based (ADRCs and ADNI) cohorts using generalized linear mixed models including terms for SNP, age, SNP × age interaction, sex, education, and five ancestry principal components. Significance was determined based on a joint test of the SNP's main effect and interaction with age. Results across datasets were combined using inverse-variance meta-analysis. Genome-wide tests of pleiotropy for each domain pair as the outcome were performed using PLACO software. Results: Individual domain and pleiotropy analyses revealed genome-wide significant (GWS) associations with five established loci for AD and AD-related disorders (BIN1, CR1, GRN, MS4A6A, and APOE) and eight novel loci. ULK2 was associated with executive function in the community-based cohorts (rs157405, P = 2.19 × 10-9). GWS associations for language were identified with CDK14 in the clinic-based cohorts (rs705353, P = 1.73 × 10-8) and LINC02712 in the total sample (rs145012974, P = 3.66 × 10-8). GRN (rs5848, P = 4.21 × 10-8) and PURG (rs117523305, P = 1.73 × 10-8) were associated with memory in the total and community-based cohorts, respectively. GWS pleiotropy was observed for language and memory with LOC107984373 (rs73005629, P = 3.12 × 10-8) in the clinic-based cohorts, and with NCALD (rs56162098, P = 1.23 × 10-9) and PTPRD (rs145989094, P = 8.34 × 10-9) in the community-based cohorts. GWS pleiotropy was also found for executive function and memory with OSGIN1 (rs12447050, P = 4.09 × 10-8) and PTPRD (rs145989094, P = 3.85 × 10-8) in the community-based cohorts. Functional studies have previously linked AD to ULK2, NCALD, and PTPRD. Conclusion: Our results provide some insight into biological pathways underlying processes leading to domain-specific cognitive impairment and AD, as well as a conduit toward a syndrome-specific precision medicine approach to AD. Increasing the number of participants with harmonized cognitive domain scores will enhance the discovery of additional genetic factors of cognitive decline leading to AD and related dementias.Item A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer's Disease in African Ancestry(Public Library of Science, 2022-07-05) Rajabli, Farid; Beecham, Gary W.; Hendrie, Hugh C.; Baiyewu, Olusegun; Ogunniyi, Adesola; Gao, Sujuan; Kushch, Nicholas A.; Lipkin-Vasquez, Marina; Hamilton-Nelson, Kara L.; Young, Juan I.; Dykxhoorn, Derek M.; Nuytemans, Karen; Kunkle, Brian W.; Wang, Liyong; Jin, Fulai; Liu, Xiaoxiao; Feliciano-Astacio, Briseida E.; Alzheimer’s Disease Sequencing Project; Alzheimer’s Disease Genetic Consortium; Schellenberg, Gerard D.; Dalgard, Clifton L.; Griswold, Anthony J.; Byrd, Goldie S.; Reitz, Christiane; Cuccaro, Michael L.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Psychiatry, School of MedicineAfrican descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (β = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (β = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (β = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (β = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.Item Associations of Sex, Race, and Apolipoprotein E Alleles With Multiple Domains of Cognition Among Older Adults(American Medical Association, 2023) Walters, Skylar; Contreras, Alex G.; Eissman, Jaclyn M.; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Trittschuh, Emily H.; Mez, Jesse B.; Bush, William S.; Kunkle, Brian W.; Naj, Adam C.; Peterson, Amalia; Gifford, Katherine A.; Cuccaro, Michael L.; Cruchaga, Carlos; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li-San; Haines, Jonathan L.; Jefferson, Angela L.; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Thompson, Paul M.; Martin, Eden R.; Bennett, David A.; Barnes, Lisa L.; Schneider, Julie A.; Crane, Paul K.; Hohman, Timothy J.; Dumitrescu, Logan; Alzheimer’s Disease Neuroimaging Initiative; Alzheimer’s Disease Genetics Consortium; Alzheimer’s Disease Sequencing Project; Radiology and Imaging Sciences, School of MedicineImportance: Sex differences are established in associations between apolipoprotein E (APOE) ε4 and cognitive impairment in Alzheimer disease (AD). However, it is unclear whether sex-specific cognitive consequences of APOE are consistent across races and extend to the APOE ε2 allele. Objective: To investigate whether sex and race modify APOE ε4 and ε2 associations with cognition. Design, setting, and participants: This genetic association study included longitudinal cognitive data from 4 AD and cognitive aging cohorts. Participants were older than 60 years and self-identified as non-Hispanic White or non-Hispanic Black (hereafter, White and Black). Data were previously collected across multiple US locations from 1994 to 2018. Secondary analyses began December 2021 and ended September 2022. Main outcomes and measures: Harmonized composite scores for memory, executive function, and language were generated using psychometric approaches. Linear regression assessed interactions between APOE ε4 or APOE ε2 and sex on baseline cognitive scores, while linear mixed-effect models assessed interactions on cognitive trajectories. The intersectional effect of race was modeled using an APOE × sex × race interaction term, assessing whether APOE × sex interactions differed by race. Models were adjusted for age at baseline and corrected for multiple comparisons. Results: Of 32 427 participants who met inclusion criteria, there were 19 007 females (59%), 4453 Black individuals (14%), and 27 974 White individuals (86%); the mean (SD) age at baseline was 74 years (7.9). At baseline, 6048 individuals (19%) had AD, 4398 (14%) were APOE ε2 carriers, and 12 538 (38%) were APOE ε4 carriers. Participants missing APOE status were excluded (n = 9266). For APOE ε4, a robust sex interaction was observed on baseline memory (β = -0.071, SE = 0.014; P = 9.6 × 10-7), whereby the APOE ε4 negative effect was stronger in females compared with males and did not significantly differ among races. Contrastingly, despite the large sample size, no APOE ε2 × sex interactions on cognition were observed among all participants. When testing for intersectional effects of sex, APOE ε2, and race, an interaction was revealed on baseline executive function among individuals who were cognitively unimpaired (β = -0.165, SE = 0.066; P = .01), whereby the APOE ε2 protective effect was female-specific among White individuals but male-specific among Black individuals. Conclusions and relevance: In this study, while race did not modify sex differences in APOE ε4, the APOE ε2 protective effect could vary by race and sex. Although female sex enhanced ε4-associated risk, there was no comparable sex difference in ε2, suggesting biological pathways underlying ε4-associated risk are distinct from ε2 and likely intersect with age-related changes in sex biology.Item Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing(Springer Nature, 2019-03) Kunkle, Brian W.; Grenier-Boley, Benjamin; Sims, Rebecca; Bis, Joshua C.; Damotte, Vincent; Naj, Adam C.; Boland, Anne; Vronskaya, Maria; van der Lee, Sven J.; Amlie-Wolf, Alexandre; Bellenguez, Céline; Frizatti, Aura; Chouraki, Vincent; Martin, Eden R.; Sleegers, Kristel; Badarinarayan, Nandini; Jakobsdottir, Johanna; Hamilton-Nelson, Kara L.; Moreno-Grau, Sonia; Olaso, Robert; Raybould, Rachel; Chen, Yuning; Kuzma, Amanda B.; Hiltunen, Mikko; Morgan, Taniesha; Ahmad, Shahzad; Vardarajan, Badri N.; Epelbaum, Jacques; Hoffmann, Per; Boada, Merce; Beecham, Gary W.; Garnier, Jean-Guillaume; Harold, Denise; Fitzpatrick, Annette L.; Valladares, Otto; Moutet, Marie-Laure; Gerrish, Amy; Smith, Albert V.; Qu, Liming; Bacq, Delphine; Denning, Nicola; Jian, Xueqiu; Zhao, Yi; Del Zompo, Maria; Fox, Nick C.; Choi, Seung-Hoan; Mateo, Ignacio; Hughes, Joseph T.; Adams, Hieab H.; Malamon, John; Sanchez-Garcia, Florentino; Patel, Yogen; Brody, Jennifer A.; Dombroski, Beth A.; Deniz Naranjo, Maria Candida; Daniilidou, Makrina; Eiriksdottir, Gudny; Mukherjee, Shubhabrata; Wallon, David; Uphill, James; Aspelund, Thor; Cantwell, Laura B.; Garzia, Fabienne; Galimberti, Daniela; Hofer, Edith; Butkiewicz, Mariusz; Fin, Bertrand; Scarpini, Elio; Sarnowski, Chloe; Bush, Will S.; Meslage, Stéphane; Kornhuber, Johannes; White, Charles C.; Song, Yuenjoo; Barber, Robert C.; Engelborghs, Sebastiaan; Sordon, Sabrina; Voijnovic, Dina; Adams, Perrie M.; Vandenberghe, Rik; Mayhaus, Manuel; Cupples, L. Adrienne; Albert, Marilyn S.; De Deyn, Peter P.; Gu, Wei; Himali, Jayanadra J.; Beekly, Duane; Squassina, Alessio; Hartmann, Annette M.; Orellana, Adelina; Blacker, Deborah; Rodriguez-Rodriguez, Eloy; Lovestone, Simon; Garcia, Melissa E.; Doody, Rachelle S.; Munoz-Fernadez, Carmen; Sussams, Rebecca; Lin, Honghuang; Fairchild, Thomas J.; Benit, Yolanda A.; Holmes, Clive; Karamujić-Čomić, Hata; Frosch, Matthew P.; Thonberg, Hakan; Maier, Wolfgang; Roshchupkin, Gennady; Ghetti, Bernardino; Giedraitis, Vilmantas; Kawalia, Amit; Li, Shuo; Huebinger, Ryan M.; Kilander, Lena; Moebus, Susanne; Hernández, Isabel; Kamboh, M. Ilyas; Brundin, RoseMarie; Turton, James; Yang, Qiong; Katz, Mindy J.; Concari, Letizia; Lord, Jenny; Beiser, Alexa S.; Keene, C. Dirk; Helisalmi, Seppo; Kloszewska, Iwona; Kukull, Walter A.; Koivisto, Anne Maria; Lynch, Aoibhinn; Tarraga, Lluís; Larson, Eric B.; Haapasalo, Annakaisa; Lawlor, Brian; Mosley, Thomas H.; Lipton, Richard B.; Solfrizzi, Vincenzo; Gill, Michael; Longstreth, W. T., Jr.; Montine, Thomas J.; Frisardi, Vincenza; Diez-Fairen, Monica; Rivadeneira, Fernando; Petersen, Ronald C.; Deramecourt, Vincent; Alvarez, Ignacio; Salani, Francesca; Ciaramella, Antonio; Boerwinkle, Eric; Reiman, Eric M.; Fievet, Nathalie; Rotter, Jerome I.; Reisch, Joan S.; Hanon, Olivier; Cupidi, Chiara; Uitterlinden, A. G. Andre; Royall, Donald R.; Dufouil, Carole; Maletta, Raffaele Giovanni; de Rojas, Itziar; Sano, Mary; Brice, Alexis; Cecchetti, Roberta; St. George-Hyslop, Peter; Ritchie, Karen; Tsolaki, Magda; Tsuang, Debby W.; Dubois, Bruno; Craig, David; Wu, Chuang-Kuo; Soininen, Hilkka; Avramidou, Despoina; Albin, Roger L.; Fratiglioni, Laura; Germanou, Antonia; Apostolova, Liana G.; Keller, Lina; Koutroumani, Maria; Arnold, Steven E.; Panza, Francesco; Gkatzima, Olymbia; Asthana, Sanjay; Hannequin, Didier; Whitehead, Patrice; Atwood, Craig S.; Caffarra, Paolo; Hampel, Harald; Quintela, Inés; Carracedo, Ángel; Lannfelt, Lars; Rubinsztein, David C.; Barnes, Lisa L.; Pasquier, Florence; Frölich, Lutz; Barral, Sandra; McGuinness, Bernadette; Beach, Thomas G .; Johnston, Janet A.; Becker, James T.; Passmore, Peter; Bigio, Eileen H.; Schott, Jonathan M.; Bird, Thomas D.; Warren, Jason D.; Boeve, Bradley F.; Lupton, Michelle K.; Bowen, James D.; Proitsi, Petra; Boxer, Adam; Powell, John F.; Burke, James R.; Kauwe, John S.K.; Burns, Jeffrey M.; Mancuso, Michelangelo; Buxbaum, Joseph D.; Bonuccelli, Ubaldo; Cairns, Nigel J.; McQuillin, Andrew; Cao, Chuanhai; Livingston, Gill; Carlson, Chris S.; Bass, Nicholas J.; Carlsson, Cynthia M.; Hardy, John; Carney, Regina M.; Bras, Jose; Carrasquillo, Minerva M.; Guerreiro, Rita; Allen, Mariet; Chui, Helena C.; Fisher, Elizabeth; Masullo, Carlo; Crocco, Elizabeth A.; DeCarli, Charles; Bisceglio, Gina; Dick, Malcolm; Ma, Li; Duara, Ranjan; Graff-Radford, Neill R.; Evans, Denis A.; Hodges, Angela; Faber, Kelley M.; Scherer, Martin; Fallon, Kenneth B.; Riemenschneider, Matthias; Fardo, David W.; Heun, Reinhard; Farlow, Martin R.; Kölsch, Heike; Ferris, Steven; Leber, Markus; Foroud, Tatiana M.; Heuser, Isabella; Galasko, Douglas R.; Giegling, Ina; Gearing, Marla; Hüll, Michael; Geschwind, Daniel H.; Gilbert, John R.; Morris, John; Green, Robert C.; Mayo, Kevin; Growdon, John H.; Feulner, Thomas; Hamilton, Ronald L.; Harrell, Lindy E.; Drichel, Dmitriy; Honig, Lawrence S.; Cushion, Thomas D.; Huentelman, Matthew J.; Hollingworth, Paul; Hulette, Christine M.; Hyman, Bradley T.; Marshall, Rachel; Jarvik, Gail P.; Meggy, Alun; Abner, Erin; Menzies, Georgina E.; Jin, Lee-Way; Leonenko, Ganna; Real, Luis M.; Jun, Gyungah R.; Baldwin, Clinton T.; Grozeva, Detelina; Karydas, Anna; Russo, Giancarlo; Kaye, Jeffrey A.; Kim, Ronald; Jessen, Frank; Kowall, Neil W.; Vellas, Bruno; Kramer, Joel H.; Vardy, Emma; LaFerla, Frank M.; Jöckel, Karl-Heinz; Lah, James J.; Dichgans, Martin; Leverenz, James B.; Mann, David; Levey, Allan I.; Pickering-Brown, Stuart; Lieberman, Andrew P.; Klopp, Norman; Lunetta, Kathryn L.; Wichmann, H-Erich; Lyketsos, Constantine G.; Morgan, Kevin; Marson, Daniel C.; Brown, Kristelle; Martiniuk, Frank; Medway, Christopher; Mash, Deborah C.; Nöthen, Markus M.; Masliah, Eliezer; Hooper, Nigel M.; McCormick, Wayne C.; Daniele, Antonio; McCurry, Susan M.; Bayer, Anthony; McDavid, Andrew N.; Gallacher, John; McKee, Ann C.; van den Bussche, Hendrik; Mesulam, Marsel; Brayne, Carol; Miller, Bruce L.; Riedel-Heller, Steffi; Miller, Carol A.; Miller, Joshua W.; Al-Chalabi, Ammar; Morris, John C.; Shaw, Christopher E.; Myers, Amanda J.; Wiltfang, Jens; O'Bryant, Sid; Olichney, John M.; Alvarez, Victoria; Parisi, Joseph E.; Singleton, Andrew B.; Paulson, Henry L.; Collinge, John; Perry, William R.; Mead, Simon; Peskind, Elaine; Cribbs, David H.; Rossor, Martin; Pierce, Aimee; Ryan, Natalie S.; Poon, Wayne W.; Nacmias, Benedetta; Potter, Huntington; Sorbi, Sandro; Quinn, Joseph F.; Sacchinelli, Eleonora; Raj, Ashok; Spalletta, Gianfranco; Raskind, Murray; Caltagirone, Carlo; Bossù, Paola; Orfei, Maria Donata; Reisberg, Barry; Clarke, Robert; Reitz, Christiane; Smith, A. David; Ringman, John M.; Warden, Donald; Roberson, Erik D.; Wilcock, Gordon; Rogaeva, Ekaterina; Bruni, Amalia Cecilia; Rosen, Howard J.; Gallo, Maura; Rosenberg, R.N.; Ben-Shlomo, Yoav; Sager, Mark A.; Mecocci, Patrizia; Saykin, Andrew J.; Pastor, Pau; Cuccaro, Michael L.; Vance, Jeffery M.; Schneider, Julie A.; Schneider, Lori S.; Slifer, Susan; Seeley, William W.; Smith, Amanda G.; Sonnen, Joshua A.; Spina, Salvatore; Stern, Robert A.; Swerdlow, Russell H.; Tang, Mitchell; Tanzi, Rudolph E.; Trojanowski, John Q.; Troncoso, Juan C.; Van Deerlin, Vivianna M.; Van Eldik, Linda J.; Vinters, Harry V.; Vonsattel, Jean Paul; Weintraub, Sandra; Welsh-Bohmer, Kathleen A.; Wilhelmsen, Kirk C.; Williamson, Jennifer; Wingo, Thomas S.; Woltjer, Randall L.; Wright, Clinton B.; Yu, Chang-En; Yu, Lei; Saba, Yasaman; Pilotto, Alberto; Bullido, Maria J.; Peters, Oliver; Crane, Paul K.; Bennett, David; Bosco, Paola; Coto, Eliecer; Boccardi, Virginia; De Jager, Phil L.; Lleo, Alberto; Warner, Nick; Lopez, Oscar L.; Ingelsson, Martin; Deloukas, Panagiotis; Cruchaga, Carlos; Graff, Caroline; Gwilliam, Rhian; Fornage, Myriam; Goate, Alison M.; Sanchez-Juan, Pascual; Kehoe, Patrick G.; Amin, Najaf; Ertekin-Taner, Nilifur; Berr, Claudine; Debette, Stéphanie; Love, Seth; Launer, Lenore J.; Younkin, Steven G.; Dartigues, Jean-Francois; Corcoran, Chris; Ikram, M. Arfan; Dickson, Dennis W.; Nicolas, Gael; Campion, Dominique; Tschanz, JoAnn; Schmidt, Helena; Hakonarson, Hakon; Clarimon, Jordi; Munger, Ron; Schmidt, Reinhold; Farrer, Lindsay A.; Van Broeckhoven, Christine; O'Donovan, Michael C.; DeStefano, Anita L.; Jones, Lesley; Haines, Jonathan L.; Deleuze, Jean-Francois; Owen, Michael J.; Gudnason, Vilmundur; Mayeux, Richard; Escott-Price, Valentina; Psaty, Bruce M.; Ramirez, Alfredo; Wang, Li-San; Ruiz, Agustin; van Duijn, Cornelia M.; Holmans, Peter A.; Seshadri, Sudha; Williams, Julie; Amouyel, Phillippe; Schellenberg, Gerard D.; Lambert, Jean-Charles; Pericak-Vance, Margaret A.; Pathology and Laboratory Medicine, School of MedicineRisk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 × 10-7), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.Item Genetic variants in the SHISA6 gene are associated with delayed cognitive impairment in two family datasets(Wiley, 2023) Ramos, Jairo; Caywood, Laura J.; Prough, Michael B.; Clouse, Jason E.; Herington, Sharlene D.; Slifer, Susan H.; Fuzzell, M. Denise; Fuzzell, Sarada L.; Hochstetler, Sherri D.; Miskimen, Kristy L.; Main, Leighanne R.; Osterman, Michael D.; Zaman, Andrew F.; Whitehead, Patrice L.; Adams, Larry D.; Laux, Renee A.; Song, Yeunjoo E.; Foroud, Tatiana M.; Mayeux, Richard P.; St. George-Hyslop, Peter; Ogrocki, Paula K.; Lerner, Alan J.; Vance, Jeffery M.; Cuccaro, Michael L.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Scott, William K.; Medical and Molecular Genetics, School of MedicineIntroduction: Studies of cognitive impairment (CI) in Amish communities have identified sibships containing CI and cognitively unimpaired (CU) individuals. We hypothesize that CU individuals may carry protective alleles delaying age at onset (AAO) of CI. Methods: A total of 1522 individuals screened for CI were genotyped. The outcome studied was AAO for CI individuals or age at last normal exam for CU individuals. Cox mixed-effects models examined association between age and single nucleotide variants (SNVs). Results: Three SNVs were significantly associated (P < 5 × 10-8 ) with AAO on chromosomes 6 (rs14538074; hazard ratio [HR] = 3.35), 9 (rs534551495; HR = 2.82), and 17 (rs146729640; HR = 6.38). The chromosome 17 association was replicated in the independent National Institute on Aging Genetics Initiative for Late-Onset Alzheimer's Disease dataset. Discussion: The replicated genome-wide significant association with AAO on chromosome 17 is located in the SHISA6 gene, which is involved in post-synaptic transmission in the hippocampus and is a biologically plausible candidate gene for Alzheimer's disease.Item Longitudinal change in memory performance as a strong endophenotype for Alzheimer's disease(Wiley, 2024) Archer, Derek B.; Eissman, Jaclyn M.; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Trittschuh, Emily H.; Mez, Jesse B.; Bush, William S.; Kunkle, Brian W.; Naj, Adam C.; Gifford, Katherine A.; Alzheimer's Disease Neuroimaging Initiative (ADNI); Alzheimer's Disease Genetics Consortium (ADGC); Alzheimer's Disease Sequencing Project (ADSP); Cuccaro, Michael L.; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li-San; Schellenberg, Gerard D.; Mayeux, Richard P.; Haines, Jonathan L.; Jefferson, Angela L.; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Thompson, Paul M.; Martin, Eden R.; Bennett, David A.; Barnes, Lisa L.; Schneider, Julie A.; Crane, Paul K.; Dumitrescu, Logan; Hohman, Timothy J.; Radiology and Imaging Sciences, School of MedicineIntroduction: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. Methods: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. Results: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. Discussion: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. Highlights: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.Item New insights into the genetic etiology of Alzheimer's disease and related dementias(Springer Nature, 2022) Bellenguez, Céline; Küçükali, Fahri; Jansen, Iris E.; Kleineidam, Luca; Moreno-Grau, Sonia; Amin, Najaf; Naj, Adam C.; Campos-Martin, Rafael; Grenier-Boley, Benjamin; Andrade, Victor; Holmans, Peter A.; Boland, Anne; Damotte, Vincent; van der Lee, Sven J.; Costa, Marcos R.; Kuulasmaa, Teemu; Yang, Qiong; de Rojas, Itziar; Bis, Joshua C.; Yaqub, Amber; Prokic, Ivana; Chapuis, Julien; Ahmad, Shahzad; Giedraitis, Vilmantas; Aarsland, Dag; Garcia-Gonzalez, Pablo; Abdelnour, Carla; Alarcón-Martín, Emilio; Alcolea, Daniel; Alegret, Montserrat; Alvarez, Ignacio; Álvarez, Victoria; Armstrong, Nicola J.; Tsolaki, Anthoula; Antúnez, Carmen; Appollonio, Ildebrando; Arcaro, Marina; Archetti, Silvana; Arias Pastor, Alfonso; Arosio, Beatrice; Athanasiu, Lavinia; Bailly, Henri; Banaj, Nerisa; Baquero, Miquel; Barral, Sandra; Beiser, Alexa; Belén Pastor, Ana; Below, Jennifer E.; Benchek, Penelope; Benussi, Luisa; Berr, Claudine; Besse, Céline; Bessi, Valentina; Binetti, Giuliano; Bizarro, Alessandra; Blesa, Rafael; Boada, Mercè; Boerwinkle, Eric; Borroni, Barbara; Boschi, Silvia; Bossù, Paola; Bråthen, Geir; Bressler, Jan; Bresner, Catherine; Brodaty, Henry; Brookes, Keeley J.; Brusco, Luis Ignacio; Buiza-Rueda, Dolores; Bûrger, Katharina; Burholt, Vanessa; Bush, William S.; Calero, Miguel; Cantwell, Laura B.; Chene, Geneviève; Chung, Jaeyoon; Cuccaro, Michael L.; Carracedo, Ángel; Cecchetti, Roberta; Cervera-Carles, Laura; Charbonnier, Camille; Chen, Hung-Hsin; Chillotti, Caterina; Ciccone, Simona; Claassen, Jurgen A. H. R.; Clark, Christopher; Conti, Elisa; Corma-Gómez, Anaïs; Costantini, Emanuele; Custodero, Carlo; Daian, Delphine; Dalmasso, Maria Carolina; Daniele, Antonio; Dardiotis, Efthimios; Dartigues, Jean-François; de Deyn, Peter Paul; de Paiva Lopes, Katia; de Witte, Lot D.; Debette, Stéphanie; Deckert, Jürgen; Del Ser, Teodoro; Denning, Nicola; DeStefano, Anita; Dichgans, Martin; Diehl-Schmid, Janine; Diez-Fairen, Mónica; Dionigi Rossi, Paolo; Djurovic, Srdjan; Duron, Emmanuelle; Düzel, Emrah; Dufouil, Carole; Eiriksdottir, Gudny; Engelborghs, Sebastiaan; Escott-Price, Valentina; Espinosa, Ana; Ewers, Michael; Faber, Kelley M.; Fabrizio, Tagliavini; Fallgaard Nielsen, Sune; Fardo, David W.; Farotti, Lucia; Fenoglio, Chiara; Fernández-Fuertes, Marta; Ferrari, Raffaele; Ferreira, Catarina B.; Ferri, Evelyn; Fin, Bertrand; Fischer, Peter; Fladby, Tormod; Fließbach, Klaus; Fongang, Bernard; Fornage, Myriam; Fortea, Juan; Foroud, Tatiana M.; Fostinelli, Silvia; Fox, Nick C.; Franco-Macías, Emlio; Bullido, María J.; Frank-García, Ana; Froelich, Lutz; Fulton-Howard, Brian; Galimberti, Daniela; García-Alberca, Jose Maria; García-González, Pablo; Garcia-Madrona, Sebastian; Garcia-Ribas, Guillermo; Ghidoni, Roberta; Giegling, Ina; Giorgio, Giaccone; Goate, Alison M.; Goldhardt, Oliver; Gomez-Fonseca, Duber; González-Pérez, Antonio; Graff, Caroline; Grande, Giulia; Green, Emma; Grimmer, Timo; Grünblatt, Edna; Grunin, Michelle; Gudnason, Vilmundur; Guetta-Baranes, Tamar; Haapasalo, Annakaisa; Hadjigeorgiou, Georgios; Haines, Jonathan L.; Hamilton-Nelson, Kara L.; Hampel, Harald; Hanon, Olivier; Hardy, John; Hartmann, Annette M.; Hausner, Lucrezia; Harwood, Janet; Heilmann-Heimbach, Stefanie; Helisalmi, Seppo; Heneka, Michael T.; Hernández, Isabel; Herrmann, Martin J.; Hoffmann, Per; Holmes, Clive; Holstege, Henne; Huerto Vilas, Raquel; Hulsman, Marc; Humphrey, Jack; Jan Biessels, Geert; Jian, Xueqiu; Johansson, Charlotte; Jun, Gyungah R.; Kastumata, Yuriko; Kauwe, John; Kehoe, Patrick G.; Kilander, Lena; Kinhult Ståhlbom, Anne; Kivipelto, Miia; Koivisto, Anne; Kornhuber, Johannes; Kosmidis, Mary H.; Kukull, Walter A.; Kuksa, Pavel P.; Kunkle, Brian W.; Kuzma, Amanda B.; Lage, Carmen; Laukka, Erika J.; Launer, Lenore; Lauria, Alessandra; Lee, Chien-Yueh; Lehtisalo, Jenni; Lerch, Ondrej; Lleó, Alberto; Longstreth, William, Jr.; Lopez, Oscar; Lopez de Munain, Adolfo; Love, Seth; Löwemark, Malin; Luckcuck, Lauren; Lunetta, Kathryn L.; Ma, Yiyi; Macías, Juan; MacLeod, Catherine A.; Maier, Wolfgang; Mangialasche, Francesca; Spallazzi, Marco; Marquié, Marta; Marshall, Rachel; Martin, Eden R.; Martín Montes, Angel; Martínez Rodríguez, Carmen; Masullo, Carlo; Mayeux, Richard; Mead, Simon; Mecocci, Patrizia; Medina, Miguel; Meggy, Alun; Mehrabian, Shima; Mendoza, Silvia; Menéndez-González, Manuel; Mir, Pablo; Moebus, Susanne; Mol, Merel; Molina-Porcel, Laura; Montrreal, Laura; Morelli, Laura; Moreno, Fermin; Morgan, Kevin; Mosley, Thomas; Nöthen, Markus M.; Muchnik, Carolina; Mukherjee, Shubhabrata; Nacmias, Benedetta; Ngandu, Tiia; Nicolas, Gael; Nordestgaard, Børge G.; Olaso, Robert; Orellana, Adelina; Orsini, Michela; Ortega, Gemma; Padovani, Alessandro; Paolo, Caffarra; Papenberg, Goran; Parnetti, Lucilla; Pasquier, Florence; Pastor, Pau; Peloso, Gina; Pérez-Cordón, Alba; Pérez-Tur, Jordi; Pericard, Pierre; Peters, Oliver; Pijnenburg, Yolande A. L.; Pineda, Juan A.; Piñol-Ripoll, Gerard; Pisanu, Claudia; Polak, Thomas; Popp, Julius; Posthuma, Danielle; Priller, Josef; Puerta, Raquel; Quenez, Olivier; Quintela, Inés; Qvist Thomassen, Jesper; Rábano, Alberto; Rainero, Innocenzo; Rajabli, Farid; Ramakers, Inez; Real, Luis M.; Reinders, Marcel J. T.; Reitz, Christiane; Reyes-Dumeyer, Dolly; Ridge, Perry; Riedel-Heller, Steffi; Riederer, Peter; Roberto, Natalia; Rodriguez-Rodriguez, Eloy; Rongve, Arvid; Rosas Allende, Irene; Rosende-Roca, Maitée; Royo, Jose Luis; Rubino, Elisa; Rujescu, Dan; Sáez, María Eugenia; Sakka, Paraskevi; Saltvedt, Ingvild; Sanabria, Ángela; Sánchez-Arjona, María Bernal; Sanchez-Garcia, Florentino; Sánchez Juan, Pascual; Sánchez-Valle, Raquel; Sando, Sigrid B.; Sarnowski, Chloé; Satizabal, Claudia L.; Scamosci, Michela; Scarmeas, Nikolaos; Scarpini, Elio; Scheltens, Philip; Scherbaum, Norbert; Scherer, Martin; Schmid, Matthias; Schneider, Anja; Schott, Jonathan M.; Selbæk, Geir; Seripa, Davide; Serrano, Manuel; Sha, Jin; Shadrin, Alexey A.; Skrobot, Olivia; Slifer, Susan; Snijders, Gijsje J. L.; Soininen, Hilkka; Solfrizzi, Vincenzo; Solomon, Alina; Song, Yeunjoo; Sorbi, Sandro; Sotolongo-Grau, Oscar; Spalletta, Gianfranco; Spottke, Annika; Squassina, Alessio; Stordal, Eystein; Tartan, Juan Pablo; Tárraga, Lluís; Tesí, Niccolo; Thalamuthu, Anbupalam; Thomas, Tegos; Tosto, Giuseppe; Traykov, Latchezar; Tremolizzo, Lucio; Tybjærg-Hansen, Anne; Uitterlinden, Andre; Ullgren, Abbe; Ulstein, Ingun; Valero, Sergi; Valladares, Otto; Van Broeckhoven, Christine; Vance, Jeffery; Vardarajan, Badri N.; van der Lugt, Aad; Van Dongen, Jasper; van Rooij, Jeroen; van Swieten, John; Vandenberghe, Rik; Verhey, Frans; Vidal, Jean-Sébastien; Vogelgsang, Jonathan; Vyhnalek, Martin; Wagner, Michael; Wallon, David; Wang, Li-San; Wang, Ruiqi; Weinhold, Leonie; Wiltfang, Jens; Windle, Gill; Woods, Bob; Yannakoulia, Mary; Zare, Habil; Zhao, Yi; Zhang, Xiaoling; Zhu, Congcong; Zulaica, Miren; EADB; GR@ACE; DEGESCO; EADI; GERAD; Demgene; FinnGen; ADGC; CHARGE; Farrer, Lindsay A.; Psaty, Bruce M.; Ghanbari, Mohsen; Raj, Towfique; Sachdev, Perminder; Mather, Karen; Jessen, Frank; Ikram, M. Arfan; de Mendonça, Alexandre; Hort, Jakub; Tsolaki, Magda; Pericak-Vance, Margaret A.; Amouyel, Philippe; Williams, Julie; Frikke-Schmidt, Ruth; Clarimon, Jordi; Deleuze, Jean-François; Rossi, Giacomina; Seshadri, Sudha; Andreassen, Ole A.; Ingelsson, Martin; Hiltunen, Mikko; Sleegers, Kristel; Schellenberg, Gerard D.; van Duijn, Cornelia M.; Sims, Rebecca; van der Flier, Wiesje M.; Ruiz, Agustín; Ramirez, Alfredo; Lambert, Jean-Charles; Medical and Molecular Genetics, School of MedicineCharacterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.Item Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel(American Medical Association, 2021-01-01) Kunkle, Brian W.; Schmidt, Michael; Klein, Hans-Ulrich; Naj, Adam C.; Hamilton-Nelson, Kara L.; Larson, Eric B.; Evans, Denis A.; De Jager, Phil L.; Crane, Paul K.; Buxbaum, Joe D.; Ertekin-Taner, Nilufer; Go, Rodney C.P.; Obisesan, Thomas O.; Kamboh, Ilyas; Bennett, David A.; Hall, Kathleen S.; Goate, Alison M.; Foroud, Tatiana M.; Martin, Eden R.; Wang, Li-Sao; Byrd, Goldie S.; Farrer, Lindsay A.; Haines, Jonathan L.; Schellenberg, Gerard D.; Mayeux, Richard; Pericak-Vance, Margaret A.; Reitz, Christiane; Graff-Radford, Neill R.; Martinez, Izri; Ayodele, Temitope; Logue, Mark W.; Cantwell, Laura B.; Jean-Francois, Melissa; Kuzma, Amanda B.; Adams, L.D.; Vance, Jeffery M.; Cuccaro, Michael L.; Chung, Jaeyoon; Mez, Jesse; Lunetta, Kathryn L.; Jun, Gyungah R.; Lopez, Oscar L.; Hendrie, Hugh C.; Reiman, Eric M.; Kowall, Neil W.; Leverenz, James B.; Small, Scott A.; Levey, Allan I.; Golde, Todd E.; Saykin, Andrew J.; Starks, Takiyah D.; Albert, Marilyn S.; Hyman, Bradley T.; Petersen, Ronald C.; Sano, Mary; Wisniewski, Thomas; Vassar, Robert; Kaye, Jeffrey A.; Henderson, Victor W.; DeCarli, Charles; LaFerla, Frank M.; Brewer, James B.; Miller, Bruce L.; Swerdlow, Russell H.; Van Eldik, Linda J.; Paulson, Henry L.; Trojanowski, John Q.; Chui, Helena C.; Rosenberg, Roger N.; Craft, Suzanne; Grabowski, Thomas J.; Asthana, Sanjay; Morris, John C.; Strittmatter, Stephen M.; Kukull, Walter A.; Psychiatry, School of MedicineImportance: Compared with non-Hispanic White individuals, African American individuals from the same community are approximately twice as likely to develop Alzheimer disease. Despite this disparity, the largest Alzheimer disease genome-wide association studies to date have been conducted in non-Hispanic White individuals. In the largest association analyses of Alzheimer disease in African American individuals, ABCA7, TREM2, and an intergenic locus at 5q35 were previously implicated. Objective: To identify additional risk loci in African American individuals by increasing the sample size and using the African Genome Resource panel. Design, setting, and participants: This genome-wide association meta-analysis used case-control and family-based data sets from the Alzheimer Disease Genetics Consortium. There were multiple recruitment sites throughout the United States that included individuals with Alzheimer disease and controls of African American ancestry. Analysis began October 2018 and ended September 2019. Main outcomes and measures: Diagnosis of Alzheimer disease. Results: A total of 2784 individuals with Alzheimer disease (1944 female [69.8%]) and 5222 controls (3743 female [71.7%]) were analyzed (mean [SD] age at last evaluation, 74.2 [13.6] years). Associations with 4 novel common loci centered near the intracellular glycoprotein trafficking gene EDEM1 (3p26; P = 8.9 × 10-7), near the immune response gene ALCAM (3q13; P = 9.3 × 10-7), within GPC6 (13q31; P = 4.1 × 10-7), a gene critical for recruitment of glutamatergic receptors to the neuronal membrane, and within VRK3 (19q13.33; P = 3.5 × 10-7), a gene involved in glutamate neurotoxicity, were identified. In addition, several loci associated with rare variants, including a genome-wide significant intergenic locus near IGF1R at 15q26 (P = 1.7 × 10-9) and 6 additional loci with suggestive significance (P ≤ 5 × 10-7) such as API5 at 11p12 (P = 8.8 × 10-8) and RBFOX1 at 16p13 (P = 5.4 × 10-7) were identified. Gene expression data from brain tissue demonstrate association of ALCAM, ARAP1, GPC6, and RBFOX1 with brain β-amyloid load. Of 25 known loci associated with Alzheimer disease in non-Hispanic White individuals, only APOE, ABCA7, TREM2, BIN1, CD2AP, FERMT2, and WWOX were implicated at a nominal significance level or stronger in African American individuals. Pathway analyses strongly support the notion that immunity, lipid processing, and intracellular trafficking pathways underlying Alzheimer disease in African American individuals overlap with those observed in non-Hispanic White individuals. A new pathway emerging from these analyses is the kidney system, suggesting a novel mechanism for Alzheimer disease that needs further exploration. Conclusions and relevance: While the major pathways involved in Alzheimer disease etiology in African American individuals are similar to those in non-Hispanic White individuals, the disease-associated loci within these pathways differ.Item Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease(Oxford University Press, 2022) Eissman, Jaclyn M.; Dumitrescu, Logan; Mahoney, Emily R.; Smith, Alexandra N.; Mukherjee, Shubhabrata; Lee, Michael L.; Scollard, Phoebe; Choi, Seo Eun; Bush, William S.; Engelman, Corinne D.; Lu, Qiongshi; Fardo, David W.; Trittschuh, Emily H.; Mez, Jesse; Kaczorowski, Catherine C.; Hernandez Saucedo, Hector; Widaman, Keith F.; Buckley, Rachel F.; Properzi, Michael J.; Mormino, Elizabeth C.; Yang, Hyun Sik; Harrison, Theresa M.; Hedden, Trey; Nho, Kwangsik; Andrews, Shea J.; Tommet, Douglas; Hadad, Niran; Sanders, R. Elizabeth; Ruderfer, Douglas M.; Gifford, Katherine A.; Zhong, Xiaoyuan; Raghavan, Neha S.; Vardarajan, Badri N.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer’s Disease Genetics Consortium (ADGC); A4 Study Team; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li San; Cruchaga, Carlos; Schellenberg, Gerard D.; Cox, Nancy J.; Haines, Jonathan L.; Keene, C. Dirk; Saykin, Andrew J.; Larson, Eric B.; Sperling, Reisa A.; Mayeux, Richard; Cuccaro, Michael L.; Bennett, David A.; Schneider, Julie A.; Crane, Paul K.; Jefferson, Angela L.; Hohman, Timothy J.; Radiology and Imaging Sciences, School of MedicineApproximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.Item Sex-specific genetic architecture of late-life memory performance(Wiley, 2024) Eissman, Jaclyn M.; Archer, Derek B.; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Trittschuh, Emily H.; Mez, Jesse B.; Bush, William S.; Kunkle, Brian W.; Naj, Adam C.; Gifford, Katherine A.; Alzheimer's Disease Neuroimaging Initiative (ADNI); Alzheimer's Disease Genetics Consortium (ADGC); The Alzheimer's Disease Sequencing Project (ADSP); Cuccaro, Michael L.; Cruchaga, Carlos; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li-San; Schellenberg, Gerard D.; Mayeux, Richard P.; Haines, Jonathan L.; Jefferson, Angela L.; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Thompson, Paul M.; Martin, Eden R.; Bennett, David A.; Barnes, Lisa L.; Schneider, Julie A.; Crane, Paul K.; Hohman, Timothy J.; Dumitrescu, Logan; Radiology and Imaging Sciences, School of MedicineBackground: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. Methods: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales = 11,942; Nfemales = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. Results: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. Discussion: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. Highlights: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.