- Browse by Author
Browsing by Author "Crofford, Leslie J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Human and Machine Intelligence Together Drive Drug Repurposing in Rare Diseases(Frontiers Media, 2021-07-28) Challa, Anup P.; Zaleski, Nicole M.; Jerome, Rebecca N.; Lavieri, Robert R.; Shirey-Rice, Jana K.; Barnado, April; Lindsell, Christopher J.; Aronoff, David M.; Crofford, Leslie J.; Harris, Raymond C.; Ikizler, T. Alp; Mayer, Ingrid A.; Holroyd, Kenneth J.; Pulley, Jill M.; Medicine, School of MedicineRepurposing is an increasingly attractive method within the field of drug development for its efficiency at identifying new therapeutic opportunities among approved drugs at greatly reduced cost and time of more traditional methods. Repurposing has generated significant interest in the realm of rare disease treatment as an innovative strategy for finding ways to manage these complex conditions. The selection of which agents should be tested in which conditions is currently informed by both human and machine discovery, yet the appropriate balance between these approaches, including the role of artificial intelligence (AI), remains a significant topic of discussion in drug discovery for rare diseases and other conditions. Our drug repurposing team at Vanderbilt University Medical Center synergizes machine learning techniques like phenome-wide association study-a powerful regression method for generating hypotheses about new indications for an approved drug-with the knowledge and creativity of scientific, legal, and clinical domain experts. While our computational approaches generate drug repurposing hits with a high probability of success in a clinical trial, human knowledge remains essential for the hypothesis creation, interpretation, "go-no go" decisions with which machines continue to struggle. Here, we reflect on our experience synergizing AI and human knowledge toward realizable patient outcomes, providing case studies from our portfolio that inform how we balance human knowledge and machine intelligence for drug repurposing in rare disease.Item Modeling bivariate longitudinal hormone profiles by hierarchical state space models(Taylor & Francis, 2014-01-01) Liu, Ziyue; Cappola, Anne R.; Crofford, Leslie J.; Guo, Whensheng; Department of Medicine, IU School of MedicineThe hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.