- Browse by Author
Browsing by Author "Craft, Hannah"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of amyloid and cardiovascular risk with cognition: Findings from KBASE(Wiley, 2024) Chaudhuri, Soumilee; Dempsey, Desarae A.; Huang, Yen-Ning; Park, Tamina; Cao, Sha; Chumin, Evgeny J.; Craft, Hannah; Crane, Paul K.; Mukherjee, Shubhabrata; Choi, Seo-Eun; Scollard, Phoebe; Lee, Michael; Nakano, Connie; Mez, Jesse; Trittschuh, Emily H.; Klinedinst, Brandon S.; Hohman, Timothy J.; Lee, Jun-Young; Kang, Koung Mi; Sohn, Chul-Ho; Kim, Yu Kyeong; Yi, Dahyun; Byun, Min Soo; Risacher, Shannon L.; Nho, Kwangsik; Saykin, Andrew J.; Lee, Dong Young; KBASE Research Group; Radiology and Imaging Sciences, School of MedicineBackground: Limited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. Methods: Vascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. Results: Baseline analyses revealed that amyloid-negative (Aβ-) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ- CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. Conclusion: Our findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ- individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid-positive individuals had worse cognitive performance than Aβ- individuals. Highlights: Vascular risk significantly affects cognition in amyloid-negative older Koreans. Amyloid-negative CN older adults with high vascular risk had lower baseline cognition. Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk. The study underscores the impact of vascular health on the AD disease spectrum.Item Genome-wide transcriptome analysis of Aβ deposition on PET in a Korean cohort(Wiley, 2024) Park, Tamina; Hwang, Jiyun; Liu, Shiwei; Chaudhuri, Soumilee; Han, Sang Won; Yi, Dahyun; Byun, Min Soo; Huang, Yen-Ning; Rosewood, Thea; Jung, Gijung; Kim, Min Jeong; Ahn, Hyejin; Lee, Jun-Young; Kim, Yu Kyeong; Cho, MinYoung; Bice, Paula J.; Craft, Hannah; Risacher, Shannon L.; Gao, Hongyu; Liu, Yunlong; Kim, SangYun; Park, Young Ho; Lee, Dong Young; Saykin, Andrew J.; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineIntroduction: Despite the recognized importance of including ethnic diversity in Alzheimer's disease (AD) research, substantial knowledge gaps remain, particularly in Asian populations. Methods: RNA sequencing was performed on blood samples from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) to perform differential gene expression (DGE), gene co-expression network, gene-set enrichment, and machine learning analyses for amyloid beta (Aβ) deposition on positron emission tomography. Results: DGE analysis identified 265 dysregulated genes associated with Aβ deposition and replicated three AD-associated genes in an independent Korean cohort. Network analysis identified two modules related to pathways including a natural killer (NK) cell-mediated immunity. Machine learning analysis showed the classification of Aβ positivity improved with the inclusion of gene expression data. Discussion: Our results in a Korean population suggest Aβ deposition-associated genes are enriched in NK cell-mediated immunity, providing a better understanding of AD molecular mechanisms and yielding potential diagnostic and therapeutic strategies. Highlights: Dysregulated genes were associated with amyloid beta (Aβ) deposition on positron emission tomography in a Korean cohort. Dysregulated genes in Alzheimer's disease were replicated in an independent Korean cohort. Gene network modules were associated with Aβ deposition. Natural killer (NK) cell proportion in blood was associated with Aβ deposition. Dysregulated genes were related to a NK cell-mediated immunity.