- Browse by Author
Browsing by Author "Cooper, David K.C."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses(Springer Nature, 2021-06-23) Li, Ping; Walsh, Julia R.; Lopez, Kevin; Isidan, Abdulkadir; Zhang, Wenjun; Chen, Angela M.; Goggins, William C.; Higgins, Nancy G.; Liu, Jianyun; Brutkiewicz, Randy R.; Smith, Lester J.; Hara, Hidetaka; Cooper, David K.C.; Ekser, Burcin; Surgery, School of MedicineXenotransplantation (cross-species transplantation) using genetically-engineered pig organs offers a potential solution to address persistent organ shortage. Current evaluation of porcine genetic modifications is to monitor the nonhuman primate immune response and survival after pig organ xenotransplantation. This measure is an essential step before clinical xenotransplantation trials, but it is time-consuming, costly, and inefficient with many variables. We developed an efficient approach to quickly examine human-to-pig xeno-immune responses in vitro. A porcine endothelial cell was characterized and immortalized for genetic modification. Five genes including GGTA1, CMAH, β4galNT2, SLA-I α chain, and β2-microglobulin that are responsible for the production of major xenoantigens (αGal, Neu5Gc, Sda, and SLA-I) were sequentially disrupted in immortalized porcine endothelial cells using CRISPR/Cas9 technology. The elimination of αGal, Neu5Gc, Sda, and SLA-I dramatically reduced the antigenicity of the porcine cells, though the cells still retained their ability to provoke human natural killer cell activation. In summary, evaluation of human immune responses to genetically modified porcine cells in vitro provides an efficient method to identify ideal combinations of genetic modifications for improving pig-to-human compatibility, which should accelerate the application of xenotransplantation to humans.Item Pig Liver Xenotransplantation: A Review of Progress Toward the Clinic(Wolters Kluwer, 2016-10) Cooper, David K.C.; Dou, Ke-Feng; Tao, Kai-shan; Yang, Zhao-xu; Tector, A. Joseph; Ekser, Burcin; Surgery, School of MedicineExperience with clinical liver xenotransplantation has largely involved the transplantation of livers from nonhuman primates. Experience with pig livers has been scarce. This brief review will be restricted to assessing the potential therapeutic impact of pig liver xenotransplantation in acute liver failure and the remaining barriers that currently do not justify clinical trials. A relatively new surgical technique of heterotopic pig liver xenotransplantation is described that might play a role in bridging a patient with acute liver failure until either the native liver recovers or a suitable liver allograft is obtained. Other topics discussed include the possible mechanisms for the development of the thrombocytopenis that rapidly occurs after pig liver xenotransplantation in a primate, the impact of pig complement on graft injury, the potential infectious risks, and potential physiologic incompatibilities between pig and human. There is cautious optimism that all of these problems can be overcome by judicious genetic manipulation of the pig. If liver graft survival could be achieved in the absence of thrombocytopenia or rejection for a period of even a few days, there may be a role for pig liver transplantation as a bridge to allotransplantation in carefully selected patients.Item PUBLISHER CORRECTION: Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses(Springer Nature, 2021-08-16) Li, Ping; Walsh, Julia R.; Lopez, Kevin; Isidan, Abdulkadir; Zhang, Wenjun; Chen, Angela M.; Goggins, William C.; Higgins, Nancy G.; Liu, Jianyun; Brutkiewicz, Randy R.; Smith, Lester J.; Hara, Hidetaka; Cooper, David K.C.; Ekser, Burcin; Surgery, School of MedicineItem The role of genetically engineered pigs in xenotransplantation research(Wiley, 2016-01) Cooper, David K.C.; Ekser, Burcin; Ramsoondar, Jagdeece; Phelps, Carol; Ayares, David; Department of Surgery, IU School of MedicineThere is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near futureItem Xenotransplantation: past, present, and future(Wolters Kluwer, 2017-12) Ekser, Burcin; Li, Ping; Cooper, David K.C.; Surgery, School of MedicinePURPOSE OF REVIEW: To review the progress in the field of xenotransplantation with special attention to most recent encouraging findings which will eventually bring xenotransplantation to the clinic in the near future. RECENT FINDINGS: Starting from early 2000, with the introduction of galactose-α1,3-galactose (Gal)-knockout pigs, prolonged survival especially in heart and kidney xenotransplantation was recorded. However, remaining antibody barriers to non-Gal antigens continue to be the hurdle to overcome. The production of genetically engineered pigs was difficult requiring prolonged time. However, advances in gene editing, such as zinc finger nucleases, transcription activator-like effector nucleases, and most recently clustered regularly interspaced short palindromic repeats (CRISPR) technology made the production of genetically engineered pigs easier and available to more researchers. Today, the survival of pig-to-nonhuman primate heterotopic heart, kidney, and islet xenotransplantation reached more than 900, more than 400, and more than 600 days, respectively. The availability of multiple-gene pigs (five or six genetic modifications) and/or newer costimulation blockade agents significantly contributed to this success. Now, the field is getting ready for clinical trials with an international consensus. SUMMARY: Clinical trials in cellular or solid organ xenotransplantation are getting closer with convincing preclinical data from many centers. The next decade will show us new achievements and additional barriers in clinical xenotransplantation.