- Browse by Author
Browsing by Author "Cooke, Kenneth"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-Versus-Host Disease: III. The 2014 Biomarker Working Group Report(Elsevier B.V., 2015-05) Paczesny, Sophie; Hakim, Frances T.; Pidala, Joseph; Cooke, Kenneth; Lathrop, Julia; Griffith, Linda M.; Hansen, John; Jagasia, Madan; Miklos, David; Pavletic, Steven; Parkman, Robertson; Russek-Cohen, Estelle; Flowers, Mary E.D.; Lee, Stephanie; Martin, Paul; Vogelsang, Georgia; Walton, Marc; Schultz, Kirk R.; Department of Pediatrics, IU School of MedicineBiology-based markers to confirm or aid in the diagnosis or prognosis of chronic GVHD after allogeneic hematopoietic cell transplantation (HCT) or monitor its progression are critically needed to facilitate evaluation of new therapies. Biomarkers have been defined as any characteristic that is objectively measured and evaluated as an indicator of a normal biological or pathogenic process, a pharmacologic response to a therapeutic intervention. Applications of biomarkers in chronic GVHD clinical trials or patient management include: a) diagnosis and assessment of chronic GVHD disease activity, including distinguishing irreversible damage from continued disease activity, b) prognostic risk to develop chronic GVHD, and c) prediction of response to therapy. Sample collection for chronic GVHD biomarkers studies should be well-documented following established quality control guidelines for sample acquisition, processing, preservation and testing, at intervals that are both calendar- and event-driven. The consistent therapeutic treatment of subjects and standardized documentation needed to support biomarker studies are most likely to be provided in prospective clinical trials. To date, no chronic GVHD biomarkers have been qualified for utilization in clinical applications. Since our previous chronic GVHD Biomarkers Working Group report in 2005, an increasing number of chronic GVHD candidate biomarkers are available for further investigation. This paper provides a four-part framework for biomarker investigations: identification, verification, qualification, and application with terminology based on Food and Drug Administration and European Medicines Agency guidelines.Item Opportunities and challenges of proteomics in pediatric patients: circulating biomarkers after hematopoietic stem cell transplantation as a successful example(Wiley, 2014-12) Paczesny, Sophie; Duncan, Christine; Jacobsohn, David; Krance, Robert; Leung, Kathryn; Carpenter, Paul; Bollard, Catherine; Renbarger, Jamie; Cooke, Kenneth; Department of Medicine, IU School of MedicineBiomarkers have the potential to improve diagnosis and prognosis, facilitate-targeted treatment, and reduce health care costs. Thus, there is great hope that biomarkers will be integrated in all clinical decisions in the near future. A decade ago, the biomarker field was launched with great enthusiasm because MS revealed that blood contains a rich library of candidate biomarkers. However, biomarker research has not yet delivered on its promise due to several limitations: (i) improper sample handling and tracking as well as limited sample availability in the pediatric population, (ii) omission of appropriate controls in original study designs, (iii) lability and low abundance of interesting biomarkers in blood, and (iv) the inability to mechanistically tie biomarker presence to disease biology. These limitations as well as successful strategies to overcome them are discussed in this review. Several advances in biomarker discovery and validation have been made in hematopoietic stem cell transplantation, the current most effective tumor immunotherapy, and these could serve as examples for other conditions. This review provides fresh optimism that biomarkers clinically relevant in pediatrics are closer to being realized based on: (i) a uniform protocol for low-volume blood collection and preservation, (ii) inclusion of well-controlled independent cohorts, (iii) novel technologies and instrumentation with low analytical sensitivity, and (iv) integrated animal models for exploring potential biomarkers and targeted therapies