- Browse by Author
Browsing by Author "Cook, Norman"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item In-Vitro-Simulated Occlusal Tooth Wear Monitoring by Polarization-Sensitive Optical Coherence Tomography(2019) Alwadai, Ghadeer; Hara, Anderson T.; Diefenderfer, Kim; Lipppert, Frank; Cook, NormanBackground: Erosive tooth wear (ETW) is the loss of tooth substance due to chemo-mechanical action unrelated to bacteria. ETW affects approximately 46 percent of children/adolescents and 80 percent of adults in the U.S. Visual examination indices are available for the clinical assessment of ETW. Although useful, they are subjective and heavily based on the clinical experience of the examiner. Some quantitative techniques have been proposed and used for clinically assessing erosive tooth wear, including quantitative light-induced fluorescence, ultrasonic measurement, and more recently, polarization-sensitive optical coherence tomography (PS-OCT). Objective: The objective of this study was to explore the ability of PS-OCT to objectively measure erosive tooth wear on occlusal surfaces. Method: This study was conducted in two phases. In the first phase, 10 sound extracted human lower first premolars were selected and then exposed to tooth wear simulation gradually. PS-OCT and micro computed tomography (μ-CT) were used to evaluate enamel thickness of those premolars at the buccal cusp tip during the simulation. In phase 2, 40 extracted human lower first premolars with different severity levels of ETW on occlusal surfaces were selected based on the Basic Erosive Wear Examination (BEWE) index. A total of 10 teeth (n =10) were selected for each BEWE score (0/1/2/3). PS-OCT and μ-CT were used to evaluate the enamel thickness at the highest point on the occlusal surface. Results: There was good agreement between PS-OCT and μ-CT in both phases (phase 1: 0.89 and phase 2: 0.97) with no significant difference between PS-OCT and μ-CT. Conclusion: This result shows the potential of PS-OCT as reliable method for measuring enamel thickness and monitoring tooth wear progression on the occlusal surfaceItem Interaction between toothpaste abrasivity and toothbrush filament stiffness on the development of erosive-abrasive lesions(2015) Arrageg, Mona; Chu, Tien-Mien; Kelton, Stewart; Cook, Norman; Lippert, Frank; Hara, Anderson T.Background: Toothpaste abrasivity is considered the major contributor in toothbrushing abrasive wear, while toothbrush stiffness can be considered a secondary factor that may modify the abrasivity of toothpaste. Objectives: To investigate the longitudinal enamel and dentin surface loss caused by the interaction between the abrasives in toothpaste and toothbrush filament stiffness. Study Hypothesis: The amount of enamel and dentin loss depends on the abrasivity of the toothpaste and the filament stiffness of toothbrush. Materials and Methods: The following experimental factors were considered: abrasive suspension, at two levels (L-low: Z113 and H-high: Z103); and toothbrushes at three levels determined by bristle stiffness (soft, medium, and hard) generating 6 testing groups (n = 8). Slabs of bovine enamel and dentin were cut, embedded in acrylic resin, and polished. UPVC tapes were placed on the surface of the specimens, leaving an area of 1 × 4 mm exposed in the center of the each enamel slab. Specimens (n = 8) were subjected to 5 d of erosion/abrasion cycling: erosion (5min, 4×/d, 0.3% citric acid, pH 3.75), abrasion (15 s, 2×/d, 45 strokes each, 150-g load, automated brushing machine), fluoride treatment (15 s with abrasion and 45 s without abrasion; 275 ppm F as NaF in abrasive slurry) with exposure to artificial saliva between erosion and abrasion (1h) and all other times (overnight). Surface loss (SL, in micrometers) was determined by optical profilometry, after the third and fifth days of cycling. Data were analyzed using three-way ANOVA (alpha = 0.05). For enamel, only cycling time was found to affect surface loss with 5 d > 3 d. Overall, there was little SL (mean range: 0.76 µm to 1.85 µm). For dentin (mean SL range: 1.87 µm to 5.91 µm), significantly higher SL was found for 5 d vs. 3 d, with particularly large differences for hard toothbrush high abrasive, and medium toothbrush/low abrasive. Hard toothbrush resulted in significantly higher SL than medium toothbrush for high abrasive after 5 d, with no other significant stiffness differences. High abrasive had significantly higher SL than low abrasive overall with strong effects for all combinations, except medium stiffness after 5 d. In conclusion, the interplay between abrasivity and filament stiffness appears to be more relevant for dentin than enamel.Item Physio-Mechanical Properties of a New Zinc-Reinforced Glass Ionomer Restorative Material(Office of the Vice Chancellor for Research, 2013-04-05) Al-Angari, Sarah; Hara, Anderson T.; Chu, Tien-Min Gabriel; Platt, Jeffrey A.; Eckert, George; Cook, NormanObjective: Zinc-reinforced glass ionomer restorative material (ZRGIC) has been proposed as an improved restorative material. The study compared the mechanical properties of a ZRGIC restorative material (ChemFil Rock, (Dentsply)), with three commercially available glass ionomers (GICs); Fuji IX GP Extra (GC America), Ketac Molar (3M ESPE) and EQUIA Fil (GC America). A resin composite, Premise (Kerr), was included as a control group. Methods: Fracture toughness (KIC) testing was done according to ISO 13586, using single edge notchedbeam specimens (n=10), loaded until failure in a three-point bending test device. Specimens (n=9) for the hardness, roughness and abrasive wear testing were made by mixing and inserting the restorative materials into individual stainless steel molds followed by flattening and polishing. Knoop microhardness (KHN) was performed (25g, 30s),on pre-determined areas of the polished surfaces. For toothbrushing wear resistance and roughness, specimens were brushed in an automated brushing machine (200g) with a suspension of dentifrice and water (1:1w/v) for 20,000 strokes. Specimen surfaces were scanned in an optical profilometer before and after brushing to obtain surface roughness (Ra) and mean height (surface) loss using image subtraction and dedicated software. Data were analyzed using Wilcoxon Rank Sum tests (α=0.05).