- Browse by Author
Browsing by Author "Connolly, Mark"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Altered Sagittal- and Frontal-Plane Kinematics Following High-Intensity Stepping Training Versus Conventional Interventions in Subacute Stroke(Oxford, 2016) Mahtani, Gordhan B.; Kinnaird, Catherine R.; Connolly, Mark; Holleran, Carey L.; Hennessy, Patrick W.; Woodward, Jane; Brazg, Gabrielle; Roth, Elliot J.; Hornby, T. George; Physical Medicine and Rehabilitation, School of MedicineBackground Common locomotor deficits observed in people poststroke include decreased speeds and abnormal kinematics, characterized by altered symmetry, reduced sagittal-plane joint excursions, and use of compensatory frontal-plane behaviors during the swing phase of gait. Conventional interventions utilized to mitigate these deficits often incorporate low-intensity, impairment-based or functional exercises focused on normalizing kinematics, although the efficacy of these strategies is unclear. Conversely, higher-intensity training protocols that provide only stepping practice and do not focus on kinematics have demonstrated gains in walking function, although minimal attention toward gait quality may be concerning and has not been assessed. Objective The present study evaluated changes in spatiotemporal and joint kinematics following experimental, high-intensity stepping training compared with conventional interventions. Design Kinematic data were combined from a randomized controlled trial comparing experimental and conventional training and from a pilot experimental training study. Methods Individuals with gait deficits 1 to 6 months poststroke received up to 40 sessions of either high-intensity stepping training in variable contexts or conventional lower-intensity interventions. Analyses focused on kinematic changes during graded treadmill testing before and following training. Results Significant improvements in speed, symmetry, and selected sagittal-plane kinematics favored experimental training over conventional training, although increases in compensatory strategies also were observed. Changes in many kinematic patterns were correlated with speed changes, and increased compensatory behaviors were associated with both stride length gains and baseline impairments. Limitations Limitations include a small sample size and use of multiple statistical comparisons. Conclusions Improved speeds and selected kinematics were observed following high-intensity training, although such training also resulted in increased use of compensatory strategies. Future studies should explore the consequences of utilizing these compensatory strategies despite the observed functional gains.Item Locomotor Kinematics and Kinetics Following High-Intensity Stepping Training in Variable Contexts Poststroke(SAGE, 2020-06-06) Ardestani, Marzieh M.; Henderson, Christopher E.; Mahtani, Gordhan; Connolly, Mark; Hornby, T. George; Physical Medicine and Rehabilitation, School of MedicineBackground and Purpose Previous studies suggest individuals post-stroke can achieve substantial gains in walking function following high-intensity locomotor training (LT). Recent findings also indicate practice of variable stepping tasks targeting locomotor deficits can mitigate selected impairments underlying reduced walking speeds. The goal of this study was to investigate alterations in locomotor biomechanics following three different LT paradigms. Methods This secondary analysis of a randomized trial recruited individuals 18–85 years old and >6 months post-stroke. We compared changes in spatiotemporal, joint kinematics and kinetics following up to 30 sessions of high-intensity (>70% heart rate reserve [HRR]) LT of variable tasks targeting paretic limb and balance impairments (high-variable, HV), high-intensity LT focused only on forward walking (high-forward, HF), or low-intensity LT (<40% HRR) of variable tasks (low-variable, LV). Sagittal spatiotemporal and joint kinematics, and concentric joint powers were compared between groups. Regressions and principle component (PC) analyses were conducted to evaluate relative contributions or importance of biomechanical changes to between and within groups. Results Biomechanical data were available on 50 participants who could walk ≥0.1 m/s on a motorized treadmill. Significant differences in spatiotemporal parameters, kinematic consistency, and kinetics were observed between HV and HF vs LV. Resultant PC analyses were characterized by paretic powers and kinematic consistency following HV, while HF and LV were characterized by non-paretic powers. Conclusion High-intensity LT results in greater changes in kinematics and kinetics as compared to lower-intensity interventions. The results may suggest greater paretic-limb contributions with high-intensity variable stepping training that targets specific biomechanical deficits.