ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Conneely, Karen N."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Association of Epigenetic Age Acceleration With Risk Factors, Survival, and Quality of Life in Patients With Head and Neck Cancer
    (Elsevier, 2021) Xiao, Canhua; Miller, Andrew H.; Peng, Gang; Levine, Morgan E.; Conneely, Karen N.; Zhao, Hongyu; Eldridge, Ronald C.; Wommack, Evanthia C.; Jeon, Sangchoon; Higgins, Kristin A.; Shin, Dong M.; Saba, Nabil F.; Smith, Alicia K.; Burtness, Barbara; Park, Henry S.; Irwin, Melinda L.; Ferrucci, Leah M.; Ulrich, Bryan; Qian, David C.; Beitler, Jonathan J.; Bruner, Deborah W.; Medical and Molecular Genetics, School of Medicine
    Purpose: Epigenetic age acceleration (EAA) is robustly linked with mortality and morbidity. This study examined risk factors of EAA and its association with overall survival (OS), progression-free survival (PFS), and quality of life (QOL) in patients with head and neck cancer (HNC) receiving radiation therapy. Methods and materials: Patients without distant metastasis were enrolled and followed before and at the end of radiation therapy and at 6 and 12 months after radiation therapy. EAA was calculated with DNAmPhenoAge at all 4 time points. Risk factors included demographic characteristics, lifestyle, clinical characteristics, treatment-related symptoms, and blood biomarkers. Survival data were collected until August 2020, and QOL was measured using Functional Assessment of Cancer Therapy-HNC. Results: Increased comorbidity, symptoms unrelated to human papilloma virus, and more severe treatment-related symptoms were associated with higher EAA (P = .03 to P < .001). A nonlinear association (quadratic) between body mass index (BMI) and EAA was observed: decreased BMI (<35 kg/m2; P = .04) and increased BMI (≥35 kg/m2; P = .01) were linked to higher EAA. Increased EAA (per year) was associated with worse OS (hazard ratio [HR], 1.11 [95% confidence interval {CI}, 1.03-1.18; P = .004]; HR, 1.10 [95% CI, 1.01-1.19; P = .02] for EAA at 6 and 12 months after treatment, respectively) and PFS (HR, 1.10 [95% CI, 1.02-1.19; P = .02]; HR, 1.14 [95% CI, 1.06-1.23; P < .001]; and HR, 1.08 [95% CI, 1.02-1.14; P = .01]) for EAA before, immediately after, and 6 months after radiation therapy, respectively) and QOL over time (β = -0.61; P = .001). An average of 3.25 to 3.33 years of age acceleration across time, which was responsible for 33% to 44% higher HRs of OS and PFS, was observed in those who died or developed recurrence compared with those who did not (all P < .001). Conclusions: Compared with demographic and lifestyle factors, clinical characteristics were more likely to contribute to faster biological aging in patients with HNC. Acceleration in epigenetic age resulted in more aggressive adverse events, including OS and PFS. EAA could be considered as a marker for cancer outcomes, and decelerating aging could improve survival and QOL.
  • Loading...
    Thumbnail Image
    Item
    Ten-eleven translocation protein 1 modulates medulloblastoma progression
    (BMC, 2021-04-29) Kim, Hyerim; Kang, Yunhee; Li, Yujing; Chen, Li; Lin, Li; Johnson, Nicholas D.; Zhu, Dan; Robinson, M. Hope; McSwain, Leon; Barwick, Benjamin G.; Yuan, Xianrui; Liao, Xinbin; Zhao, Jie; Zhang, Zhiping; Shu, Qiang; Chen, Jianjun; Allen, Emily G.; Kenney, Anna M.; Castellino, Robert C.; Van Meir, Erwin G.; Conneely, Karen N.; Vertino, Paula M.; Jin, Peng; Li, Jian; Biostatistics, School of Public Health
    Background: Medulloblastoma (MB) is the most common malignant pediatric brain tumor that originates in the cerebellum and brainstem. Frequent somatic mutations and deregulated expression of epigenetic regulators in MB highlight the substantial role of epigenetic alterations. 5-hydroxymethylcytosine (5hmC) is a highly abundant cytosine modification in the developing cerebellum and is regulated by ten-eleven translocation (TET) enzymes. Results: We investigate the alterations of 5hmC and TET enzymes in MB and their significance to cerebellar cancer formation. We show total abundance of 5hmC is reduced in MB, but identify significant enrichment of MB-specific 5hmC marks at regulatory regions of genes implicated in stem-like properties and Nanog-binding motifs. While TET1 and TET2 levels are high in MBs, only knockout of Tet1 in the smoothened (SmoA1) mouse model attenuates uncontrolled proliferation, leading to a favorable prognosis. The pharmacological Tet1 inhibition reduces cell viability and platelet-derived growth factor signaling pathway-associated genes. Conclusions: These results together suggest a potential key role of 5hmC and indicate an oncogenic nature for TET1 in MB tumorigenesis, suggesting it as a potential therapeutic target for MBs.
  • Loading...
    Thumbnail Image
    Item
    The role of the gut microbiome in cancer-related fatigue: pilot study on epigenetic mechanisms
    (Springer, 2021) Xiao, Canhua; Fedirko, Veronika; Beitler, Jonathan; Bai, Jinbing; Peng, Gang; Zhou, Chao; Gu, Jianlei; Zhao, Hongyu; Lin, I-Hsin; Chico, Cynthia E.; Jeon, Sangchoon; Knobf, Tish M.; Conneely, Karen N.; Higgins, Kristin; Shin, Dong M.; Saba, Nabil; Miller, Andrew; Bruner, Deborah; Medical and Molecular Genetics, School of Medicine
    Purpose: Recent evidence supports a key role of gut microbiome in brain health. We conducted a pilot study to assess associations of gut microbiome with cancer-related fatigue and explore the associations with DNA methylation changes. Methods: Self-reported Multidimensional Fatigue Inventory and stool samples were collected at pre-radiotherapy and one-month post-radiotherapy in patients with head and neck cancer. Gut microbiome data were obtained by sequencing the 16S ribosomal ribonucleic acid gene. DNA methylation changes in the blood were assessed using Illumina Methylation EPIC BeadChip. Results: We observed significantly different gut microbiota patterns among patients with high vs. low fatigue across time. This pattern was characterized by low relative abundance in short-chain fatty acid-producing taxa (family Ruminococcaceae, genera Subdoligranulum and Faecalibacterium; all p < 0.05), with high abundance in taxa associated with inflammation (genera Family XIII AD3011 and Erysipelatoclostridium; all p < 0.05) for high-fatigue group. We identified nine KEGG Orthology pathways significantly different between high- vs. low-fatigue groups over time (all p < 0.001), including pathways related to fatty acid synthesis and oxidation, inflammation, and brain function. Gene set enrichment analysis (GSEA) was performed on the top differentially methylated CpG sites that were associated with the taxa and fatigue. All biological processes from the GSEA were related to immune responses and inflammation (FDR < 0.05). Conclusions: Our results suggest different patterns of the gut microbiota in cancer patients with high vs. low fatigue. Results from functional pathways and DNA methylation analyses indicate that inflammation is likely to be the major driver in the gut-brain axis for cancer-related fatigue.
  • Loading...
    Thumbnail Image
    Item
    Whole-genome bisulfite sequencing of cell-free DNA unveils age-dependent and ALS-associated methylation alterations
    (Springer Nature, 2025-02-20) Jin, Yulin; Conneely, Karen N.; Ma, Wenjing; Naviaux, Robert K.; Siddique, Teepu; Allen, Emily G.; Guingrich, Sandra; Pascuzzi, Robert M.; Jin, Peng; Neurology, School of Medicine
    Background: Cell-free DNA (cfDNA) in plasma carries epigenetic signatures specific to tissue or cell of origin. Aberrant methylation patterns in circulating cfDNA have emerged as valuable tools for noninvasive cancer detection, prenatal diagnostics, and organ transplant assessment. Such epigenetic changes also hold significant promise for the diagnosis of neurodegenerative diseases, which often progresses slowly and has a lengthy asymptomatic period. However, genome-wide cfDNA methylation changes in neurodegenerative diseases remain poorly understood. Results: We used whole-genome bisulfite sequencing (WGBS) to profile age-dependent and ALS-associated methylation signatures in cfDNA from 30 individuals, including young and middle-aged controls, as well as ALS patients with matched controls. We identified 5,223 age-related differentially methylated loci (DMLs) (FDR < 0.05), with 51.6% showing hypomethylation in older individuals. Our results significantly overlapped with age-associated CpGs identified in a large blood-based epigenome-wide association study (EWAS). Comparing ALS patients to controls, we detected 1,045 differentially methylated regions (DMRs) in gene bodies, promoters, and intergenic regions. Notably, these DMRs were linked to key ALS-associated pathways, including endocytosis and cell adhesion. Integration with spinal cord transcriptomics revealed that 31% of DMR-associated genes exhibited differential expression in ALS patients compared to controls, with over 20 genes significantly correlating with disease duration. Furthermore, comparison with published single-nucleus RNA sequencing (snRNA-Seq) data of ALS demonstrated that cfDNA methylation changes reflects cell-type-specific gene dysregulation in the brain of ALS patients, particularly in excitatory neurons and astrocytes. Deconvolution of cfDNA methylation profiles suggested altered proportions of immune and liver-derived cfDNA in ALS patients. Conclusions: cfDNA methylation is a powerful tool for assessing age-related changes and ALS-specific molecular dysregulation by revealing perturbed locus, genes, and the proportional contributions of different tissues/cells to the plasma. This technique holds promise for clinical application in biomarker discovery across a broad spectrum of neurodegenerative disorders.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University