- Browse by Author
Browsing by Author "Condon, Keith W"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Increased strontium uptake in trabecular bone of ovariectomized calcium-deficient rats treated with strontium ranelate or strontium chloride(2011-11) Pemmer, Bernhard; Hofstaetter, Jochen G; Meirer, Florian; Smolek, Stephan; Wobrauschek, Peter; Simon, Rolf; Fuchs, Robyn K; Allen, Matthew R.; Condon, Keith W; Reinwald, Susan; Phipps, Roger J; Burr, David B.; Paschalis, Eleftherios P; Klaushofer, Klaus; Streli, Christina; Roschger, PaulBased on clinical trials showing the efficacy to reduce vertebral and non-vertebral fractures, strontium ranelate (SrR) has been approved in several countries for the treatment of postmenopausal osteoporosis. Hence, it is of special clinical interest to elucidate how the Sr uptake is influenced by dietary Ca deficiency as well as by the formula of Sr administration, SrR versus strontium chloride (SrCl2). Three-month-old ovariectomized rats were treated for 90 days with doses of 25 mg kg-1 d-1 and 150 mg kg-1 d-1 of SrR or SrCl2 at low (0.1% Ca) or normal (1.19% Ca) Ca diet. Vertebral bone tissue was analysed by confocal synchrotron-radiation-induced micro X-ray fluorescence and by backscattered electron imaging. Principal component analysis and k-means clustering of the acquired elemental maps of Ca and Sr revealed that the newly formed bone exhibited the highest Sr fractions and that low Ca diet increased the Sr uptake by a factor of three to four. Furthermore, Sr uptake in bone of the SrCl2-treated animals was generally lower compared with SrR. The study clearly shows that inadequate nutritional calcium intake significantly increases uptake of Sr in serum as well as in trabecular bone matrix. This indicates that nutritional calcium intake as well as serum Ca levels are important regulators of any Sr treatment.Item Resolution of Inflammation Induces Osteoblast Function and Regulates the Wnt Signaling Pathway(2012-05) Matzelle, Melissa M; Gallant, Maxime A; Condon, Keith W; Walsh, Nicole C; Manning, Catherine A; Stein, Gary S; Lian, Jane B; Burr, David B.; Gravallese, Ellen MObjective Inflammation in the bone microenvironment stimulates osteoclast differentiation, resulting in uncoupling of resorption and formation. Mechanisms contributing to the inhibition of osteoblast function in inflammatory diseases, however, have not been elucidated. Rheumatoid arthritis (RA) is a prototype of an inflammatory arthritis that results in focal loss of articular bone. The paucity of bone repair in inflammatory diseases such as RA raises compelling questions regarding the impact of inflammation on bone formation. The aim of this study was to establish the mechanisms by which inflammation regulates osteoblast activity. Methods We characterized an innovative variant of a murine model of arthritis in which inflammation is induced in C57BL/6J mice by transfer of arthritogenic K/BxN serum and allowed to resolve. Results In the setting of resolving inflammation, bone resorption ceased and appositional osteoblast-mediated bone formation was induced, resulting in repair of eroded bone. Resolution of inflammation was accompanied by striking changes in the expression of regulators of the Wnt/β-catenin pathway, which is critical for osteoblast differentiation and function. Down-regulation of the Wnt antagonists secreted frizzled-related protein 1 (sFRP1) and sFRP2 during the resolution phase paralleled induction of the anabolic and pro–matrix mineralization factors Wnt10b and DKK2, demonstrating the role of inflammation in regulating Wnt signaling. Conclusion Repair of articular bone erosion occurs in the setting of resolving inflammation, accompanied by alterations in the Wnt signaling pathway. These data imply that in inflammatory diseases that result in persistent articular bone loss, strict control of inflammation may not be achieved and may be essential for the generation of an anabolic microenvironment that supports bone formation and repair.