- Browse by Author
Browsing by Author "Colombo, Giancarlo"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Behavioral profiling of multiple pairs of rats selectively bred for high and low alcohol intake using the MCSF test(Wiley, 2012-01) Roman, Erika; Stewart, Robert B.; Bertholomey, Megan L.; Jensen, Meredith L.; Colombo, Giancarlo; Hyytiä, Petri; Badia-Elder, Nancy E.; Grahame, Nicholas J.; Li, Ting-Kai; Lumeng, Lawrence; Psychology, School of ScienceGenetic aspects of alcoholism have been modeled using rats selectively bred for extremes of alcohol preference and voluntary alcohol intake. These lines show similar alcohol drinking phenotypes but have different genetic and environmental backgrounds and may therefore display diverse behavioral traits as seen in human alcoholics. The multivariate concentric square field™ (MCSF) test is designed to provoke exploration and behaviors associated with risk assessment, risk taking and shelter seeking in a novel environment. The aim was to use the MCSF to characterize behavioral profiles in rat lines from selective breeding programs in the United States (P/NP, HAD1/LAD1, HAD2/LAD2), Italy (sP/sNP) and Finland (AA/ANA). The open field and elevated plus maze tests were used as reference tests. There were substantial differences within some of the pairs of selectively bred rat lines as well as between all alcohol-preferring rats. The most pronounced differences within the pairs of lines were between AA and ANA rats and between sP and sNP rats followed by intermediate differences between P and NP rats and minor differences comparing HAD and LAD rats. Among all preferring lines, P, HAD1 and HAD2 rats shared similar behavioral profiles, while AA and sP rats were quite different from each other and the others. No single trait appeared to form a common 'pathway' associated with a high alcohol drinking phenotype among all of the alcohol-preferring lines of rats. The marked behavioral differences found in the different alcohol-preferring lines may mimic the heterogeneity observed among human alcoholic subtypes.Item Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption(Elsevier, 2013-11) McBride, William J.; Kimpel, Mark W.; McClintick, Jeanette N.; Ding, Zheng-Ming; Hyytia, Petri; Colombo, Giancarlo; Liang, Tiebing; Edenberg, Howard J.; Lumeng, Lawrence; Bell, Richard L.; Biochemistry & Molecular Biology, School of MedicineThe objectives of this study were to determine innate differences in gene expression in 2 regions of the extended amygdala between 5 different pairs of lines of male rats selectively bred for high or low ethanol consumption: a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats, b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line-pairs 1 and 2), c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats, and d) Sardinian alcohol-preferring (sP) vs. Sardinian alcohol-nonpreferring (sNP) rats, and then to determine if these differences are common across the line-pairs. Microarray analysis revealed up to 1772 unique named genes in the nucleus accumbens shell (AcbSh) and 494 unique named genes in the central nucleus of the amygdala (CeA) that significantly differed [False Discovery Rate (FDR) = 0.10; fold-change at least 1.2] in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 or 4 line-pairs, but not for all 5 line-pairs. However, there were almost no individual genes in common within these categories and networks. ANOVAs of the combined data for the 5 line-pairs indicated 1014 and 731 significant (p < 0.01) differences in expression of named genes in the AcbSh and CeA, respectively. There were 4-6 individual named genes that significantly differed across up to 3 line-pairs in both regions; only 1 gene (Gsta4 in the CeA) differed in as many as 4 line-pairs. Overall, the findings suggest that a) some biological categories or networks (e.g., cell-to-cell signaling, cellular stress response, cellular organization, etc.) may be in common for subsets of line-pairs within either the AcbSh or CeA, and b) regulation of different genes and/or combinations of multiple biological systems may be contributing to the disparate alcohol drinking behaviors of these line-pairs.Item The sequenced rat brain transcriptome--its use in identifying networks predisposing alcohol consumption(Wiley, 2015-09) Saba, Laura M.; Flink, Stephen C.; Vanderlinden, Lauren A.; Israel, Yedy; Tampier, Lutske; Colombo, Giancarlo; Kiianmaa, Kalervo; Bell, Richard L.; Printz, Morton P.; Flodman, Pamela; Koob, George; Richardson, Heather N.; Lombardo, Joseph; Hoffman, Paula L.; Tabakoff, Boris; Department of Psychiatry, IU School of MedicineA quantitative genetic approach, which involves correlation of transcriptional networks with the phenotype in a recombinant inbred (RI) population and in selectively bred lines of rats, and determination of coinciding QTLs for gene expression and the trait of interest, has been applied in the current study. In this analysis, a novel approach was used that combined DNA-Seq data, data from brain exon array analysis of HXB/BXH RI rat strains and six pairs of rat lines selectively bred for high and low alcohol preference, and RNA-Seq data (including rat brain transcriptome reconstruction) to quantify transcript expression levels, generate co-expression modules, and identify biological functions that contribute to the predisposition to consume varying amounts of alcohol. A gene co-expression module was identified in the RI rat strains that contained both annotated and unannotated transcripts expressed in brain, and was associated with alcohol consumption in the RI panel. This module was found to be enriched with differentially expressed genes from the selected lines of rats. The candidate genes within the module and differentially expressed genes between high and low drinking selected lines were associated with glia (microglia and astrocytes), and could be categorized as being related to immune function, energy metabolism and calcium homeostasis, and glial-neuronal communication. Our results illustrate that there are multiple combinations of genetic factors that can produce the same phenotypic outcome. While no single gene accounts for predisposition to a particular level of alcohol consumption in every animal model, coordinated differential expression of subsets of genes in the identified pathways produce similar phenotypic outcomes.