- Browse by Author
Browsing by Author "Collado-Vides, Julio"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Bacterial regulatory networks are extremely flexible in evolution(2006-05) Lozada-Chávez, Irma; Janga, Sarath Chandra; Collado-Vides, JulioOver millions of years the structure and complexity of the transcriptional regulatory network (TRN) in bacteria has changed, reorganized and enabled them to adapt to almost every environmental niche on earth. In order to understand the plasticity of TRNs in bacteria, we studied the conservation of currently known TRNs of the two model organisms Escherichia coli K12 and Bacillus subtilis across complete genomes including Bacteria, Archaea and Eukarya at three different levels: individual components of the TRN, pairs of interactions and regulons. We found that transcription factors (TFs) evolve much faster than the target genes (TGs) across phyla. We show that global regulators are poorly conserved across the phylogenetic spectrum and hence TFs could be the major players responsible for the plasticity and evolvability of the TRNs. We also found that there is only a small fraction of significantly conserved transcriptional regulatory interactions among different phyla of bacteria and that there is no constraint on the elements of the interaction to co-evolve. Finally our results suggest that majority of the regulons in bacteria are rapidly lost implying a high-order flexibility in the TRNs. We hypothesize that during the divergence of bacteria certain essential cellular processes like the synthesis of arginine, biotine and ribose, transport of amino acids and iron, availability of phosphate, replication process and the SOS response are well conserved in evolution. From our comparative analysis, it is possible to infer that transcriptional regulation is more flexible than the genetic component of the organisms and its complexity and structure plays an important role in the phenotypic adaptation.Item Coordination logic of the sensing machinery in the transcriptional regulatory network of Escherichia coli(2007-10) Janga, Sarath Chandra; Salgado, Heladia; Martínez-Antonio, Agustino; Collado-Vides, JulioThe active and inactive state of transcription factors in growing cells is usually directed by allosteric physicochemical signals or metabolites, which are in turn either produced in the cell or obtained from the environment by the activity of the products of effector genes. To understand the regulatory dynamics and to improve our knowledge about how transcription factors (TFs) respond to endogenous and exogenous signals in the bacterial model, Escherichia coli, we previously proposed to classify TFs into external, internal and hybrid sensing classes depending on the source of their allosteric or equivalent metabolite. Here we analyze how a cell uses its topological structures in the context of sensing machinery and show that, while feed forward loops (FFLs) tightly integrate internal and external sensing TFs connecting TFs from different layers of the hierarchical transcriptional regulatory network (TRN), bifan motifs frequently connect TFs belonging to the same sensing class and could act as a bridge between TFs originating from the same level in the hierarchy. We observe that modules identified in the regulatory network of E. coli are heterogeneous in sensing context with a clear combination of internal and external sensing categories depending on the physiological role played by the module. We also note that propensity of two-component response regulators increases at promoters, as the number of TFs regulating a target operon increases. Finally we show that evolutionary families of TFs do not show a tendency to preserve their sensing abilities. Our results provide a detailed panorama of the topological structures of E. coli TRN and the way TFs they compose off, sense their surroundings by coordinating responses.Item Nebulon: a system for the inference of functional relationships of gene products from the rearrangement of predicted operons(2005-04) Janga, Sarath Chandra; Collado-Vides, Julio; Moreno-Hagelsieb, GabrielSince operons are unstable across Prokaryotes, it has been suggested that perhaps they re-combine in a conservative manner. Thus, genes belonging to a given operon in one genome might re-associate in other genomes revealing functional relationships among gene products. We developed a system to build networks of functional relationships of gene products based on their organization into operons in any available genome. The operon predictions are based on inter-genic distances. Our system can use different kinds of thresholds to accept a functional relationship, either related to the prediction of operons, or to the number of non-redundant genomes that support the associations. We also work by shells, meaning that we decide on the number of linking iterations to allow for the complementation of related gene sets. The method shows high reliability benchmarked against knowledge-bases of functional interactions. We also illustrate the use of Nebulon in finding new members of regulons, and of other functional groups of genes. Operon rearrangements produce thousands of high-quality new interactions per prokaryotic genome, and thousands of confirmations per genome to other predictions, making it another important tool for the inference of functional interactions from genomic context.Item The partitioned Rhizobium etli genome: Genetic and metabolic redundancy in seven interacting replicons(2006-03) González, Víctor; Santamaria, Rosa I.; Bustos, Patricia; Hernández-González, Ismael; Medrano-Soto, Arturo; Moreno-Hagelsieb, Gabriel; Janga, Sarath Chandra; Ramírez, Miguel A.; Jiménez-Jacinto, Verónica; Collado-Vides, Julio; Dávila, GuillermoWe report the complete 6,530,228-bp genome sequence of the symbiotic nitrogen fixing bacterium Rhizobium etli. Six large plasmids comprise one-third of the total genome size. The chromosome encodes most functions necessary for cell growth, whereas few essential genes or complete metabolic pathways are located in plasmids. Chromosomal synteny is disrupted by genes related to insertion sequences, phages, plasmids, and cell-surface components. Plasmids do not show synteny, and their orthologs are mostly shared by accessory replicons of species with multipartite genomes. Some nodulation genes are predicted to be functionally related with chromosomal loci encoding for the external envelope of the bacterium. Several pieces of evidence suggest an exogenous origin for the symbiotic plasmid (p42d) and p42a. Additional putative horizontal gene transfer events might have contributed to expand the adaptive repertoire of R. etli, because they include genes involved in small molecule metabolism, transport, and transcriptional regulation. Twenty-three putative sigma factors, numerous isozymes, and paralogous families attest to the metabolic redundancy and the genomic plasticity necessary to sustain the lifestyle of R. etli in symbiosis and in the soil.Item Transcriptional regulation constrains the organization of genes on eukaryotic chromosomes(2008-10) Janga, Sarath Chandra; Collado-Vides, Julio; Babu, M. MadanGenetic material in eukaryotes is tightly packaged in a hierarchical manner into multiple linear chromosomes within the nucleus. Although it is known that eukaryotic transcriptional regulation is complex and requires an intricate coordination of several molecular events both in space and time, whether the complexity of this process constrains genome organization is still unknown. Here, we present evidence for the existence of a higher-order organization of genes across and within chromosomes that is constrained by transcriptional regulation. In particular, we reveal that the target genes (TGs) of transcription factors (TFs) for the yeast, Saccharomyces cerevisiae, are encoded in a highly ordered manner both across and within the 16 chromosomes. We show that (i) the TGs of a majority of TFs show a strong preference to be encoded on specific chromosomes, (ii) the TGs of a significant number of TFs display a strong preference (or avoidance) to be encoded in regions containing particular chromosomal landmarks such as telomeres and centromeres, and (iii) the TGs of most TFs are positionally clustered within a chromosome. Our results demonstrate that specific organization of genes that allowed for efficient control of transcription within the nuclear space has been selected during evolution. We anticipate that uncovering such higher-order organization of genes in other eukaryotes will provide insights into nuclear architecture, and will have implications in genetic engineering experiments, gene therapy, and understanding disease conditions that involve chromosomal aberrations.