- Browse by Author
Browsing by Author "Clayton, Brent"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Identification of PLCG2 activators for the treatment of Alzheimer’s disease(Wiley, 2025-01-09) Clayton, Brent; Massey, Steven M.; Beck, Daniel E.; Putt, Karson S.; Utsuki, Tada; Visvanathan, Ramya; Mesecar, Andrew D.; Lendy, Emma K.; Kaiser, Bridget L.; Chu, Shaoyou; Mason, Emily R.; Lamb, Bruce T.; Palkowitz, Alan D.; Richardson, Timothy I.; Pharmacology and Toxicology, School of MedicineBackground: The goal of the TREAT‐AD Center is to enable drug discovery by developing assays and providing tool compounds for novel and emerging targets. The role of microglia in neuroinflammation has been implicated in the pathogenesis of Alzheimer’s disease (AD). Genome‐wide association studies, whole genome sequencing, and gene‐expression network analyses comparing normal to AD brain have identified risk and protective variants in genes essential to microglial function. among them. The P522R variant of phospholipase C gamma2 (PLCγ2) is associated with reduced risk for AD and has been characterized as a functional hypermorph. Carriers of P522R with mild cognitive impairment exhibited a slower cognitive decline rate. Conversely the M28L variant increases risk. Therefore, activation of the protein PLCγ2 with small molecules has been proposed as a therapeutic strategy to reduce the rate of disease progression and cognitive decline in AD patients. Method: We performed a high‐throughput screen using affinity selection mass spectrometry (ASMS) to identify novel small molecules that bind to the full‐length protein PLCγ2. A Cellular Thermal Shift Assay (CETSA) was developed to confirm target engagement in cells. A liposomal‐based, fluorogenic reporter biochemical assay was implemented to evaluate activity of the enzyme. A high‐content imaging assay measuring phagocytosis, cell number, and nuclear intensity was carried out using the BV2 and HMC3 cell lines to characterize cellular pharmacology and cytotoxicity. Structure activity relationship (SAR) studies were performed to synthesize analogs and optimize for binding and cellular pharmacology. Optimized compounds have been studied in vivo to assess pharmacokinetic properties and drug likeness. Result: Novel PLCγ2 activators have been discovered and preliminary optimization has been completed. These compounds have shown positive results for target engagement, biochemical activity, and cellular pharmacology. In silico predictions indicated the molecule structures are suitable CNS drug discovery program starting points. Conclusion: Activation of PLCγ2 is a novel therapeutic strategy for treatment of AD. We identified structurally distinct molecular scaffolds capable of enzyme activation and cellular activity. Recommendations for use of probe molecules in target validation studies and the development of lead‐like molecules for clinical studies will be made.Item IUSM‐Purdue TREAT‐AD Center Capabilities and Strategy to Enable and Advance Novel Therapeutic Targets for the Treatment of Alzheimer’s Disease(Wiley, 2025-01-09) Mowery, Stephanie A.; Huang, Kun; Mesecar, Andrew D.; Dage, Jeffrey L.; Clayton, Brent; Lamb, Bruce T.; Palkowitz, Alan D.; Richardson, Timothy I.; Neurology, School of MedicineBackground: The TaRget Enablement to Accelerate Therapy Development of Alzheimer’s Disease (TREAT‐AD) Centers are dedicated to identifying and validating targets from the NIH Accelerating Medicines Partnership for Alzheimer’s Disease (AMP‐AD). The centers develop Target Enabling Packages (TEPs) to explore new therapeutic target hypotheses, moving beyond the traditional focus on amyloid or tau pathologies. In accordance with open science principles, data, methods, and tools are freely shared with the research community via an open‐access platform, the AD Knowledge Portal. The Indiana University School of Medicine and Purdue University TREAT‐AD (IUSM Purdue TREAT‐AD) Center comprises four technical cores: Bioinformatics and Computational Biology (BCB), Structural Biology and Biophysics Core (SBB), Assay Development and High Throughput Screening (ADHTS), and Medicinal Chemistry and Chemical Biology (MCCB). These cores collaborate to develop research tools that are used to validate biological targets and assess their druggability with an initial focus on understanding the role of neuroinflammation in AD. Method: The BCB Core supports target selection and validation with data and analysis. The SBB Core provides proteins for assay development, biophysical assays, and structural studies to aid in mode of action and Structure Activity Relationship (SAR) studies. The ADHTS Core develops in vitro and in vivo assays for SAR studies and translational PD biomarker strategies to assist in determining early phase clinical dosing regimens. The MCCB Core selects therapeutic modalities (small molecules, antibodies, siRNA) and discovers pharmacological tools, employing strategies for SAR studies to balance pharmacological and drug‐like properties. Result: Target Enabling Packages (TEPs) are now available via the AD Knowledge Portal for microglia targets that were prioritized for early drug discovery studies. TEPs include bioinformatics analysis, biological reagents and protocols, protein production methods, and recommended chemical probes with detailed information (Figure 1). Novel small molecule hits and leads were identified for SHIP1, PLCG2, SHP1 and LYN/HCK. Conclusion: A pipeline of prioritized microglia targets were selected and enabled for early drug discovery. The IUSM Purdue TREAT‐AD Center is now working with AMP‐AD researchers to explore biological hypothesis in addition to the role of neuroinflammation in AD.Item Optimization of SHIP1 Inhibitors for the treatment of Alzheimer’s disease(Wiley, 2025-01-09) Jesudason, Cynthia D.; Lin, Peter Bor-Chian; Soni, Disha; Perkins, Bridget M.; Lee-Gosselin, Audrey; Ingraham, Cynthia M.; Hamilton, Will; Mason, Emily R.; El Jordi, Omar; Souza, Sarah; Jacobson, Marlene; Di Salvo, Jerry; Clayton, Brent; Chu, Shaoyou; Dage, Jeffrey L.; Oblak, Adrian L.; Richardson, Timothy I.; Neurology, School of MedicineBackground: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer’s disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2. SHIP1 possesses a phosphatase (Ptase) domain flanked by a pleckstrin‐homology (PH) domain that binds phosphatidylinositol (3,4,5)‐trisphosphate[PI(3,4,5)P3] and a C2 domain that binds phosphatidylinositol (3,4)‐bisphosphate [PI(3,4)P2]. The Ptase domain converts PI(3,4,5)P3 to PI(3,4)P2. SHIP1 also has an SH2 domain that binds to ITIMs and ITAMs where it competes with kinases. Inhibiting SHIP1 is hypothesized to have potential therapeutic benefits, as it may improve TREM2‐mediated microglial responses to neurotoxins and promote an overall neuroprotective microglial phenotype to maintain a more resilient brain and slow the rate of cognitive decline in AD patients. Method: The IUSM Purdue TREAT‐AD Center recently evaluated SHIP1 inhibitors and proposed 3‐((2,4‐Dichlorobenzyl)oxy)‐5‐(1‐(piperidin‐4‐yl)‐1H‐pyrazol‐4‐yl)pyridine for target validation studies. Structurally related analogs were synthesized and tested for SHIP1 enzyme inhibition, AKT signaling, and microglia activation in a high‐content imaging assay using HMC3 and BV2 microglia‐like cell lines. Primary microglia were treated with an optimized SHIP1 inhibitor, and subsequent changes in fibril Aβ uptake and cell viability were assessed. The NanoString nCounter Neuroinflammation assay was used to measure transcriptomic profiles. For comparison primary microglial derived from both wild‐type and Inpp5d‐haploinsufficient mice were assessed. Result: Novel SHIP1 inhibitors have been discovered and preliminary Structure Activity Relationship (SAR) studies have been completed. These compounds have shown positive results for biochemical activity, target engagement and cellular pharmacology. Both Inpp5d deficiency and pharmacological inhibition increase amyloid uptake and cell viability in primary microglia. Elevated ERK and AKT phosphorylation, after amyloid exposure, were decreased by Inpp5d deficiency. Functional pathways associated with phagocytosis, apoptosis, cytokine production, and complement system activity were altered. Conclusion: These data demonstrate that SHIP1 inhibition promotes amyloid uptake through the complement system. SHIP1 inhibition also enhances cell survival and homeostasis in primary microglia. Further studies of SHIP1 inhibition and INPP5D knockdown in animal models may provide a potential therapeutic strategy for Alzheimer’s disease.Item SHIP1 phosphatase as a Late‐Onset Alzheimer’s Disease therapeutic target(Wiley, 2025-01-09) Singhal, Kratika; Hamdani, Adam K.; Jesudason, Cynthia D.; Beck, Daniel E.; Clayton, Brent; Richardson, Timothy I.; Mesecar, Andrew D.; Medicine, School of MedicineBackground: Alzheimer’s disease (AD) is a highly complex neurological disorder, with Late‐Onset AD (LOAD) being its most common form. INPP5D has been identified as a risk gene for AD and is involved in the TREM2 signaling pathway, which is crucial for microglial activity. INPP5D encodes SHIP1, a protein phosphatase that disrupts TREM2 signaling by converting PIP3 into PIP2, thereby inhibiting the PI3K‐mediated activation of Akt‐dependent signaling, which is essential for the clearance of amyloid oligomers, fibrils, and plaques. SHIP1 is a large, multidomain protein, and many aspects of its structure and function are poorly understood. Method: We have expressed, purified, and characterized the kinetic and biophysical properties of various domain constructs of SHIP1 to better understand the roles of individual domains. Ongoing work involves screening of inhibitors using a range of biochemical and biophysical assays with different constructs of SHIP1. Result: The response of different SHIP1 domain constructs with different substrates surprisingly revealed no significant differences in kinetic parameters between different domain constructs with the same substrate suggesting that the various domains surrounding the catalytic domain do not influence catalysis in solution. However, use of a designed chemical probe with a covalent warhead that targets SHIP1 allosterically between the catalytic and C2 domains shows significant inhibition of SHIP1 (in the absence of its SH2 domain) identifying a potential druggable site. X‐ray crystallography was used to confirm the binding pose within this site. Binding affinity with additional compounds has been determined for different domain constructs using enzyme kinetics and biophysical methods including Microscale Thermophoresis (MST) and Differential Scanning Fluorescence (DSF). Conclusion: SHIP1 is highly active in vitro (solution) without much regulation of its catalytic activity by surrounding domains. A potential druggable site has been identified between the SHIP1 catalytic and C2 domains that can be targeted allosterically by small molecule compounds. These discoveries will aid in identifying new molecules that can inhibit SHIP1 as a potential therapeutic target for AD.