- Browse by Author
Browsing by Author "Chute, Christopher G."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Semantic integration of clinical laboratory tests from electronic health records for deep phenotyping and biomarker discovery(Springer Nature, 2019) Zhang, Xingmin Aaron; Yates, Amy; Vasilevsky, Nicole; Gourdine, J. P.; Callahan, Tiffany J.; Carmody, Leigh C.; Danis, Daniel; Joachimiak, Marcin P.; Ravanmehr, Vida; Pfaff, Emily R.; Champion, James; Robasky, Kimberly; Xu, Hao; Fecho, Karamarie; Walton, Nephi A.; Zhu, Richard L.; Ramsdill, Justin; Mungall, Christopher J.; Köhler, Sebastian; Haendel, Melissa A.; McDonald, Clement J.; Vreeman, Daniel J.; Peden, David B.; Bennett, Tellen D.; Feinstein, James A.; Martin, Blake; Stefanski, Adrianne L.; Hunter, Lawrence E.; Chute, Christopher G.; Robinson, Peter N.; Medicine, School of MedicineElectronic Health Record (EHR) systems typically define laboratory test results using the Laboratory Observation Identifier Names and Codes (LOINC) and can transmit them using Fast Healthcare Interoperability Resource (FHIR) standards. LOINC has not yet been semantically integrated with computational resources for phenotype analysis. Here, we provide a method for mapping LOINC-encoded laboratory test results transmitted in FHIR standards to Human Phenotype Ontology (HPO) terms. We annotated the medical implications of 2923 commonly used laboratory tests with HPO terms. Using these annotations, our software assesses laboratory test results and converts each result into an HPO term. We validated our approach with EHR data from 15,681 patients with respiratory complaints and identified known biomarkers for asthma. Finally, we provide a freely available SMART on FHIR application that can be used within EHR systems. Our approach allows readily available laboratory tests in EHR to be reused for deep phenotyping and exploits the hierarchical structure of HPO to integrate distinct tests that have comparable medical interpretations for association studies.Item The Human Phenotype Ontology in 2024: phenotypes around the world(Oxford University Press, 2024) Gargano, Michael A.; Matentzoglu, Nicolas; Coleman, Ben; Addo-Lartey, Eunice B.; Anagnostopoulos, Anna V.; Anderton, Joel; Avillach, Paul; Bagley, Anita M.; Bakštein, Eduard; Balhoff, James P.; Baynam, Gareth; Bello, Susan M.; Berk, Michael; Bertram, Holli; Bishop, Somer; Blau, Hannah; Bodenstein, David F.; Botas, Pablo; Boztug, Kaan; Čady, Jolana; Callahan, Tiffany J.; Cameron, Rhiannon; Carbon, Seth J.; Castellanos, Francisco; Caufield, J. Harry; Chan, Lauren E.; Chute, Christopher G.; Cruz-Rojo, Jaime; Dahan-Oliel, Noémi; Davids, Jon R.; de Dieuleveult, Maud; de Souza, Vinicius; de Vries, Bert B. A.; de Vries, Esther; DePaulo, J. Raymond; Derfalvi, Beata; Dhombres, Ferdinand; Diaz-Byrd, Claudia; Dingemans, Alexander J. M.; Donadille, Bruno; Duyzend, Michael; Elfeky, Reem; Essaid, Shahim; Fabrizzi, Carolina; Fico, Giovanna; Firth, Helen V.; Freudenberg-Hua, Yun; Fullerton, Janice M.; Gabriel, Davera L.; Gilmour, Kimberly; Giordano, Jessica; Goes, Fernando S.; Gore Moses, Rachel; Green, Ian; Griese, Matthias; Groza, Tudor; Gu, Weihong; Guthrie, Julia; Gyori, Benjamin; Hamosh, Ada; Hanauer, Marc; Hanušová, Kateřina; He, Yongqun Oliver; Hegde, Harshad; Helbig, Ingo; Holasová, Kateřina; Hoyt, Charles Tapley; Huang, Shangzhi; Hurwitz, Eric; Jacobsen, Julius O. B.; Jiang, Xiaofeng; Joseph, Lisa; Keramatian, Kamyar; King, Bryan; Knoflach, Katrin; Koolen, David A.; Kraus, Megan L.; Kroll, Carlo; Kusters, Maaike; Ladewig, Markus S.; Lagorce, David; Lai, Meng-Chuan; Lapunzina, Pablo; Laraway, Bryan; Lewis-Smith, David; Li, Xiarong; Lucano, Caterina; Majd, Marzieh; Marazita, Mary L.; Martinez-Glez, Victor; McHenry, Toby H.; McInnis, Melvin G.; McMurry, Julie A.; Mihulová, Michaela; Millett, Caitlin E.; Mitchell, Philip B.; Moslerová, Veronika; Narutomi, Kenji; Nematollahi, Shahrzad; Nevado, Julian; Nierenberg, Andrew A.; Novák Čajbiková, Nikola; Nurnberger, John I., Jr.; Ogishima, Soichi; Olson, Daniel; Ortiz, Abigail; Pachajoa, Harry; Perez de Nanclares, Guiomar; Peters, Amy; Putman, Tim; Rapp, Christina K.; Rath, Ana; Reese, Justin; Rekerle, Lauren; Roberts, Angharad M.; Roy, Suzy; Sanders, Stephan J.; Schuetz, Catharina; Schulte, Eva C.; Schulze, Thomas G.; Schwarz, Martin; Scott, Katie; Seelow, Dominik; Seitz, Berthold; Shen, Yiping; Similuk, Morgan N.; Simon, Eric S.; Singh, Balwinder; Smedley, Damian; Smith, Cynthia L.; Smolinsky, Jake T.; Sperry, Sarah; Stafford, Elizabeth; Stefancsik, Ray; Steinhaus, Robin; Strawbridge, Rebecca; Sundaramurthi, Jagadish Chandrabose; Talapova, Polina; Tenorio Castano, Jair A.; Tesner, Pavel; Thomas, Rhys H.; Thurm, Audrey; Turnovec, Marek; van Gijn, Marielle E.; Vasilevsky, Nicole A.; Vlčková, Markéta; Walden, Anita; Wang, Kai; Wapner, Ron; Ware, James S.; Wiafe, Addo A.; Wiafe, Samuel A.; Wiggins, Lisa D.; Williams, Andrew E.; Wu, Chen; Wyrwoll, Margot J.; Xiong, Hui; Yalin, Nefize; Yamamoto, Yasunori; Yatham, Lakshmi N.; Yocum, Anastasia K.; Young, Allan H.; Yüksel, Zafer; Zandi, Peter P.; Zankl, Andreas; Zarante, Ignacio; Zvolský, Miroslav; Toro, Sabrina; Carmody, Leigh C.; Harris, Nomi L.; Munoz-Torres, Monica C.; Danis, Daniel; Mungall, Christopher J.; Köhler, Sebastian; Haendel, Melissa A.; Robinson, Peter N.; Psychiatry, School of MedicineThe Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.Item The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment(Oxford University Press, 2021) Haendel, Melissa A.; Chute, Christopher G.; Bennett, Tellen D.; Eichmann, David A.; Guinney, Justin; Kibbe, Warren A.; Payne, Philip R. O.; Pfaff, Emily R.; Robinson, Peter N.; Saltz, Joel H.; Spratt, Heidi; Suver, Christine; Wilbanks, John; Wilcox, Adam B.; Williams, Andrew E.; Wu, Chunlei; Blacketer, Clair; Bradford, Robert L.; Cimino, James J.; Clark, Marshall; Colmenares, Evan W.; Francis, Patricia A.; Gabriel, Davera; Graves, Alexis; Hemadri, Raju; Hong, Stephanie S.; Hripscak, George; Jiao, Dazhi; Klann, Jeffrey G.; Kostka, Kristin; Lee, Adam M.; Lehmann, Harold P.; Lingrey, Lora; Miller, Robert T.; Morris, Michele; Murphy, Shawn N.; Natarajan, Karthik; Palchuk, Matvey B.; Sheikh, Usman; Solbrig, Harold; Visweswaran, Shyam; Walden, Anita; Walters, Kellie M.; Weber, Griffin M.; Zhang, Xiaohan Tanner; Zhu, Richard L.; Amor, Benjamin; Girvin, Andrew T.; Manna, Amin; Qureshi, Nabeel; Kurilla, Michael G.; Michael, Sam G.; Portilla, Lili M.; Rutter, Joni L.; Austin, Christopher P.; Gersing, Ken R.; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringObjective: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. Materials and methods: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. Results: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. Conclusions: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.