- Browse by Author
Browsing by Author "Church, Colin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood(Springer Nature, 2021-12-07) Kariotis, Sokratis; Jammeh, Emmanuel; Swietlik, Emilia M.; Pickworth, Josephine A.; Rhodes, Christopher J.; Otero, Pablo; Wharton, John; Iremonger, James; Dunning, Mark J.; Pandya, Divya; Mascarenhas, Thomas S.; Errington, Niamh; Thompson, A. A. Roger; Romanoski, Casey E.; Rischard, Franz; Garcia, Joe G. N.; Yuan, Jason X.-J.; Schwantes An, Tae-Hwi; Desai, Ankit A.; Coghlan, Gerry; Lordan, Jim; Corris, Paul A.; Howard, Luke S.; Condliffe, Robin; Kiely, David G.; Church, Colin; Pepke-Zaba, Joanna; Toshner, Mark; Wort, Stephen; Gräf, Stefan; Morrell, Nicholas W.; Wilkins, Martin R.; Lawrie, Allan; Wang, Dennis; UK National PAH Cohort Study Consortium; Medicine, School of MedicineIdiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis. The poor prognosis subgroup is associated with upregulation of the ALAS2 and downregulation of several immunoglobulin genes, while the good prognosis subgroup is defined by upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of HLA-DPA1/DPB1 (independently associated with survival). These findings independently validated provide evidence for the existence of 3 major subgroups (endophenotypes) within the IPAH classification, could improve risk stratification and provide molecular insights into the pathogenesis of IPAH.Item Mendelian randomisation and experimental medicine approaches to interleukin-6 as a drug target in pulmonary arterial hypertension(European Respiratory Society, 2022-03-10) Toshner, Mark; Church, Colin; Harbaum, Lars; Rhodes, Christopher; Villar Moreschi, Sofia S.; Liley, James; Jones, Rowena; Arora, Amit; Batai, Ken; Desai, Ankit A.; Coghlan, John G.; Gibbs, J. Simon R.; Gor, Dee; Gräf, Stefan; Harlow, Louise; Hernandez-Sanchez, Jules; Howard, Luke S.; Humbert, Marc; Karnes, Jason; Kiely, David G.; Kittles, Rick; Knightbridge, Emily; Lam, Brian; Lutz, Katie A.; Nichols, William C.; Pauciulo, Michael W.; Pepke-Zaba, Joanna; Suntharalingam, Jay; Soubrier, Florent; Trembath, Richard C.; Schwantes-An, Tae-Hwi L.; Wort, S. John; Wilkins, Martin R.; Gaine, Sean; Morrell, Nicholas W.; Corris, Paul A.; Uniphy Clinical Trials Network; Medicine, School of MedicineBackground: Inflammation and dysregulated immunity are important in the development of pulmonary arterial hypertension (PAH). Compelling preclinical data supports the therapeutic blockade of interleukin-6 (IL-6) signalling. Methods: We conducted a phase 2 open-label study of intravenous tocilizumab (8 mg·kg-1) over 6 months in patients with group 1 PAH. Co-primary end-points were safety, defined by incidence and severity of adverse events, and change in pulmonary vascular resistance. Separately, a mendelian randomisation study was undertaken on 11 744 individuals with European ancestry including 2085 patients with idiopathic/heritable disease for the IL-6 receptor (IL6R) variant (rs7529229), known to associate with circulating IL-6R levels. Results: We recruited 29 patients (male/female 10/19; mean±sd age 54.9±11.4 years). Of these, 19 had heritable/idiopathic PAH and 10 had connective tissue disease-associated PAH. Six were withdrawn prior to drug administration; 23 patients received at least one dose of tocilizumab. Tocilizumab was discontinued in four patients owing to serious adverse events. There were no deaths. Despite evidence of target engagement in plasma IL-6 and C-reactive protein levels, both intention-to-treat and modified intention-to-treat analyses demonstrated no change in pulmonary vascular resistance. Inflammatory markers did not predict treatment response. Mendelian randomisation did not support an effect of the lead IL6R variant on risk of PAH (OR 0.99, p=0.88). Conclusion: Adverse events were consistent with the known safety profile of tocilizumab. Tocilizumab did not show any consistent treatment effect.