- Browse by Author
Browsing by Author "Chung, Mina K."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias(Oxford University Press, 2019-08) Cronin, Edmond M.; Bogun, Frank M.; Maury, Philippe; Peichl, Petr; Chen, Minglong; Namboodiri, Narayanan; Aguinaga, Luis; Leite, Luiz Roberto; Al-Khatib, Sana M.; Anter, Elad; Berruezo, Antonio; Callans, David J.; Chung, Mina K.; Cuculich, Phillip; d’Avila, Andre; Deal, Barbara J.; Bella, Paolo Della; Deneke, Thomas; Dickfeld, Timm-Michael; Hadid, Claudio; Haqqani, Haris M.; Kay, G. Neal; Latchamsetty, Rakesh; Marchlinski, Francis; Miller, John M.; Nogami, Akihiko; Patel, Akash R.; Pathak, Rajeev Kumar; Sáenz Morales, Luis C.; Santangeli, Pasquale; Sapp, John L, Jr.; Sarkozy, Andrea; Soejima, Kyoko; Stevenson, William G.; Tedrow, Usha B.; Tzou, Wendy S.; Varma, Niraj; Zeppenfeld, Katja; Medicine, School of MedicineVentricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.Item 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: Executive summary(Elsevier, 2019) Cronin, Edmond M.; Bogun, Frank M.; Maury, Philippe; Peichl, Petr; Chen, Minglong; Namboodiri, Narayanan; Aguinaga, Luis; Leite, Luiz Roberto; Al-Khatib, Sana M.; Anter, Elad; Berruezo, Antonio; Callans, David J.; Chung, Mina K.; Cuculich, Phillip; d’Avila, Andre; Deal, Barbara J.; Della Bella, Paolo; Deneke, Thomas; Dickfeld, Timm-Michael; Hadid, Claudio; Haqqani, Haris M.; Kay, G. Neal; Latchamsetty, Rakesh; Marchlinski, Francis; Miller, John M.; Nogami, Akihiko; Patel, Akash R.; Pathak, Rajeev Kumar; Saenz Morales, Luis C.; Santangeli, Pasquale; Sapp, John L., Jr.; Sarkozy, Andrea; Soejima, Kyoko; Stevenson, William G.; Tedrow, Usha B.; Tzou, Wendy S.; Varma, Niraj; Zeppenfeld, Katja; Medicine, School of MedicineVentricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.Item 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation(Elsevier, 2024) Joglar, José A.; Chung, Mina K.; Armbruster, Anastasia L.; Benjamin, Emelia J.; Chyou, Janice Y.; Cronin, Edmond M.; Deswal, Anita; Eckhardt, Lee L.; Goldberger, Zachary D.; Gopinathannair, Rakesh; Gorenek, Bulent; Hess, Paul L.; Hlatky, Mark; Hogan, Gail; Ibeh, Chinwe; Indik, Julia H.; Kido, Kazuhiko; Kusumoto, Fred; Link, Mark S.; Linta, Kathleen T.; Marcus, Gregory M.; McCarthy, Patrick M.; Patel, Nimesh; Patton, Kristen K.; Perez, Marco V.; Piccini, Jonathan P.; Russo, Andrea M.; Sanders, Prashanthan; Streur, Megan M.; Thomas, Kevin L.; Times, Sabrina; Tisdale, James E.; Valente, Anne Marie; Van Wagoner, David R.; Pharmacology and Toxicology, School of MedicineAim: The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Patients With Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. Methods: A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. Structure: Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.Item Drug Interactions Affecting Oral Anticoagulant Use(American Heart Association, 2022) Mar, Philip L.; Gopinathannair, Rakesh; Gengler, Brooke E.; Chung, Mina K.; Perez, Arturo; Dukes, Jonathan; Ezekowitz, Michael D.; Lakkireddy, Dhanunjaya; Lip, Gregory Y. H.; Miletello, Mike; Noseworthy, Peter A.; Reiffel, James; Tisdale, James E.; Olshansky, Brian; American Heart Association Electrocardiography & Arrhythmias Committee of the Council of Clinical Cardiology; Medicine, School of MedicineOral anticoagulants (OAC) are medications commonly used in patients with atrial fibrillation and other cardiovascular conditions. Both warfarin and direct oral anticoagulants (DOAC) are susceptible to drug-drug interactions (DDI). DDI are an important cause of adverse drug reactions and exact a large toll on the healthcare system. DDI for warfarin mainly involve moderate to strong inhibitors / inducers of cytochrome P450 (CYP) 2C9, which is responsible for the elimination of the more potent S-isomer of warfarin. However, inhibitor / inducers of CYP3A4 and CYP1A2 may also cause DDI with warfarin. Recognition of these precipitating agents along with increased frequency of monitoring when these agents are initiated or discontinued will minimize the impact of warfarin DDI. DOAC DDI are mainly affected by medications strongly affecting the permeability glycoprotein (P-gp), and to a lesser extent, strong CYP3A4 inhibitors / inducers. Dabigatran and edoxaban are affected by P-gp modulation. Strong inducers of CYP3A4 or P-gp should be avoided in all patients taking DOAC unless previously proven to be otherwise safe. Simultaneous strong CYP3A4 and P-gp inhibitors should be avoided in patients taking apixaban and rivaroxaban. Concomitant antiplatelet / anticoagulant use confers additive risk for bleeding, but their combination is unavoidable in many cases. Minimizing duration of concomitant anticoagulant/antiplatelet therapy as indicated by evidence-based clinical guidelines is the best way to reduce the risk of bleeding.Item Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program(Springer Nature, 2021) Taliun, Daniel; Harris, Daniel N.; Kessler, Michael D.; Carlson, Jedidiah; Szpiech, Zachary A.; Torres, Raul; Gagliano Taliun, Sarah A.; Corvelo, André; Gogarten, Stephanie M.; Kang, Hyun Min; Pitsillides, Achilleas N.; LeFaive, Jonathon; Lee, Seung-Been; Tian, Xiaowen; Browning, Brian L.; Das, Sayantan; Emde, Anne-Katrin; Clarke, Wayne E.; Loesch, Douglas P.; Shetty, Amol C.; Blackwell, Thomas W.; Smith, Albert V.; Wong, Quenna; Liu, Xiaoming; Conomos, Matthew P.; Bobo, Dean M.; Aguet, François; Albert, Christine; Alonso, Alvaro; Ardlie, Kristin G.; Arking, Dan E.; Aslibekyan, Stella; Auer, Paul L.; Barnard, John; Barr, R. Graham; Barwick, Lucas; Becker, Lewis C.; Beer, Rebecca L.; Benjamin, Emelia J.; Bielak, Lawrence F.; Blangero, John; Boehnke, Michael; Bowden, Donald W.; Brody, Jennifer A.; Burchard, Esteban G.; Cade, Brian E.; Casella, James F.; Chalazan, Brandon; Chasman, Daniel I.; Chen, Yii-Der Ida; Cho, Michael H.; Choi, Seung Hoan; Chung, Mina K.; Clish, Clary B.; Correa, Adolfo; Curran, Joanne E.; Custer, Brian; Darbar, Dawood; Daya, Michelle; de Andrade, Mariza; DeMeo, Dawn L.; Dutcher, Susan K.; Ellinor, Patrick T.; Emery, Leslie S.; Eng, Celeste; Fatkin, Diane; Fingerlin, Tasha; Forer, Lukas; Fornage, Myriam; Franceschini, Nora; Fuchsberger, Christian; Fullerton, Stephanie M.; Germer, Soren; Gladwin, Mark T.; Gottlieb, Daniel J.; Guo, Xiuqing; Hall, Michael E.; He, Jiang; Heard-Costa, Nancy L.; Heckbert, Susan R.; Irvin, Marguerite R.; Johnsen, Jill M.; Johnson, Andrew D.; Kaplan, Robert; Kardia, Sharon L. R.; Kelly, Tanika; Kelly, Shannon; Kenny, Eimear E.; Kiel, Douglas P.; Klemmer, Robert; Konkle, Barbara A.; Kooperberg, Charles; Köttgen, Anna; Lange, Leslie A.; Lasky-Su, Jessica; Levy, Daniel; Lin, Xihong; Lin, Keng-Han; Liu, Chunyu; Loos, Ruth J. F.; Garman, Lori; Gerszten, Robert; Lubitz, Steven A.; Lunetta, Kathryn L.; Mak, Angel C. Y.; Manichaikul, Ani; Manning, Alisa K.; Mathias, Rasika A.; McManus, David D.; McGarvey, Stephen T.; Meigs, James B.; Meyers, Deborah A.; Mikulla, Julie L.; Minear, Mollie A.; Mitchell, Braxton D.; Mohanty, Sanghamitra; Montasser, May E.; Montgomery, Courtney; Morrison, Alanna C.; Murabito, Joanne M.; Natale, Andrea; Natarajan, Pradeep; Nelson, Sarah C.; North, Kari E.; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Pankratz, Nathan; Peloso, Gina M.; Peyser, Patricia A.; Pleiness, Jacob; Post, Wendy S.; Psaty, Bruce M.; Rao, D. C.; Redline, Susan; Reiner, Alexander P.; Roden, Dan; Rotter, Jerome I.; Ruczinski, Ingo; Sarnowski, Chloé; Schoenherr, Sebastian; Schwartz, David A.; Seo, Jeong-Sun; Seshadri, Sudha; Sheehan, Vivien A.; Sheu, Wayne H.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Smith, Jennifer A.; Sotoodehnia, Nona; Stilp, Adrienne M.; Tang, Weihong; Taylor, Kent D.; Telen, Marilyn; Thornton, Timothy A.; Tracy, Russell P.; Van Den Berg, David J.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Vrieze, Scott; Weeks, Daniel E.; Weir, Bruce S.; Weiss, Scott T.; Weng, Lu-Chen; Willer, Cristen J.; Zhang, Yingze; Zhao, Xutong; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Boerwinkle, Eric; Gabriel, Stacey; Gibbs, Richard; Rice, Kenneth M.; Rich, Stephen S.; Silverman, Edwin K.; Qasba, Pankaj; Gan, Weiniu; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Papanicolaou, George J.; Nickerson, Deborah A.; Browning, Sharon R.; Zody, Michael C.; Zöllner, Sebastian; Wilson, James G.; Cupples, L. Adrienne; Laurie, Cathy C.; Jaquish, Cashell E.; Hernandez, Ryan D.; O'Connor, Timothy D.; Abecasis, Gonçalo R.; Epidemiology, Richard M. Fairbanks School of Public HealthThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.