ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chu, Michelle"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Allergic airway recall responses require IL-9 from resident memory CD4+ T cells
    (American Association for the Advancement of Science, 2022) Ulrich, Benjamin J.; Kharwadkar, Rakshin; Chu, Michelle; Pajulas, Abigail; Muralidharan, Charanya; Koh, Byunghee; Fu, Yongyao; Gao, Hongyu; Hayes, Tristan A.; Zhou, Hong-Ming; Goplen, Nick P.; Nelson, Andrew S.; Liu, Yunlong; Linnemann, Amelia K.; Turner, Matthew J.; Licona-Limón, Paula; Flavell, Richard A.; Sun, Jie; Kaplan, Mark H.; Microbiology and Immunology, School of Medicine
    Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.
  • Loading...
    Thumbnail Image
    Item
    ERG functionally overlaps with other Ets proteins in promoting TH9 cell expression of Il9 during allergic lung inflammation
    (American Association of Immunologists, 2023) Kharwadkar, Rakshin; Ulrich, Benjamin J.; Chu, Michelle; Koh, Byunghee; Hufford, Matthew M.; Fu, Yongyao; Birdsey, Graeme M.; Porse, Bo T.; Randi, Anna M.; Kaplan, Mark H.; Biochemistry and Molecular Biology, School of Medicine
    CD4+ TH cells develop into subsets that are specialized in the secretion of particular cytokines to mediate restricted types of inflammation and immune responses. Among the subsets that promote development of allergic inflammatory responses, IL-9-producing TH9 cells are regulated by a number of transcription factors. We have previously shown that the E26 transformation-specific (Ets) family members PU.1 and Ets translocation variant 5 (ETV5) function in parallel to regulate IL-9. In this study we identified a third member of the Ets family of transcription factors, Ets-related gene (ERG), that mediates IL-9 production in TH9 cells in the absence of PU.1 and ETV5. Chromatin immunoprecipitation assays revealed that ERG interaction at the Il9 promoter region is restricted to the TH9 lineage and is sustained during murine TH9 polarization. Knockdown or knockout of ERG during murine or human TH9 polarization in vitro led to a decrease in IL-9 production in TH9 cells. Deletion of ERG in vivo had modest effects on IL-9 production in vitro or in vivo. However, in the absence of PU.1 and ETV5, ERG was required for residual IL-9 production in vitro and for IL-9 production by lung-derived CD4 T cells in a mouse model of chronic allergic airway disease. Thus, ERG contributes to IL-9 regulation in TH9 cells.
  • Loading...
    Thumbnail Image
    Item
    Interleukin-9 promotes mast cell progenitor proliferation and CCR2-dependent mast cell migration in allergic airway inflammation
    (Elsevier, 2023) Pajulas, Abigail; Fu, Yongyao; Cheung, Cherry C. L.; Chu, Michelle; Cannon, Anthony; Alakhras, Nada; Zhang, Jilu; Ulrich, Benjamin J.; Nelson, Andrew S.; Zhou, Baohua; Kaplan, Mark H.; Microbiology and Immunology, School of Medicine
    Allergic asthma is a chronic lung disease characterized by airway hyperresponsiveness and cellular infiltration that is exacerbated by immunoglobulin E-dependent mast cell (MC) activation. Interleukin-9 (IL-9) promotes MC expansion during allergic inflammation but precisely how IL-9 expands tissue MCs and promotes MC function is unclear. In this report, using multiple models of allergic airway inflammation, we show that both mature MCs (mMCs) and MC progenitors (MCp) express IL-9R and respond to IL-9 during allergic inflammation. IL-9 acts on MCp in the bone marrow and lungs to enhance proliferative capacity. Furthermore, IL-9 in the lung stimulates the mobilization of CCR2+ mMC from the bone marrow and recruitment to the allergic lung. Mixed bone marrow chimeras demonstrate that these are intrinsic effects in the MCp and mMC populations. IL-9-producing T cells are both necessary and sufficient to increase MC numbers in the lung in the context of allergic inflammation. Importantly, T cell IL-9-mediated MC expansion is required for the development of antigen-induced and MC-dependent airway hyperreactivity. Collectively, these data demonstrate that T cell IL-9 induces lung MC expansion and migration by direct effects on the proliferation of MCp and the migration of mMC to mediate airway hyperreactivity.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University