- Browse by Author
Browsing by Author "Chrzanowski, Matthew"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A novel class of self-complementary AAV vectors with multiple advantages based on cceAAV lacking mutant ITR(Elsevier, 2024-02-03) Zhang, Junping; Frabutt, Dylan A.; Chrzanowski, Matthew; Li, Ning; Miller, Lohra M.; Tian, Jiahe; Mulcrone, Patrick L.; Lam, Anh K.; Draper, Benjamin E.; Jarrold, Martin F.; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineSelf-complementary AAV vectors (scAAV) use a mutant inverted terminal repeat (mITR) for efficient packaging of complementary stranded DNA, enabling rapid transgene expression. However, inefficient resolution at the mITR leads to the packaging of monomeric or subgenomic AAV genomes. These noncanonical particles reduce transgene expression and may affect the safety of gene transfer. To address these issues, we have developed a novel class of scAAV vectors called covalently closed-end double-stranded AAV (cceAAV) that eliminate the mITR resolution step during production. Instead of using a mutant ITR, we used a 56-bp recognition sequence of protelomerase (TelN) to covalently join the top and bottom strands, allowing the vector to be generated with just a single ITR. To produce cceAAV vectors, the vector plasmid is initially digested with TelN, purified, and then subjected to a standard triple-plasmid transfection protocol followed by traditional AAV vector purification procedures. Such cceAAV vectors demonstrate yields comparable to scAAV vectors. Notably, we observed enhanced transgene expression as compared to traditional scAAV vectors. The treatment of mice with hemophilia B with cceAAV-FIX resulted in significantly enhanced long-term FIX expression. The cceAAV vectors hold several advantages over scAAV vectors, potentially leading to the development of improved human gene therapy drugs.Item Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism(Springer Nature, 2023-05-25) Mulcrone, Patrick L.; Lam, Anh K.; Frabutt, Dylan; Zhang, Junping; Chrzanowski, Matthew; Herzog, Roland W.; Xiao, Weidon; Pediatrics, School of MedicineAlthough more adeno-associated virus AAV-based drugs enter the clinic, vector tissue tropism remains an unresolved challenge that limits its full potential despite that the tissue tropism of naturally occurring AAV serotypes can be altered by genetic engineering capsid vie DNA shuffling, or molecular evolution. To further expand the tropism and thus potential applications of AAV vectors, we utilized an alternative approach that employs chemical modifications to covalently link small molecules to reactive exposed Lysine residues of AAV capsids. We demonstrated that AAV9 capsid modified with N-ethyl Maleimide (NEM) increased its tropism more towards murine bone marrow (osteoblast lineage) while decreased transduction of liver tissue compared to the unmodified capsid. In the bone marrow, AAV9-NEM transduced Cd31, Cd34, and Cd90 expressing cells at a higher percentage than unmodified AAV9. Moreover, AAV9-NEM localized strongly in vivo to cells lining the calcified trabecular bone and transduced primary murine osteoblasts in culture, while WT AAV9 transduced undifferentiated bone marrow stromal cells as well as osteoblasts. Our approach could provide a promising platform for expanding clinical AAV development to treat bone pathologies such as cancer and osteoporosis. Thus, chemical engineering the AAV capsid holds great potential for development of future generations of AAV vectors.Item Comprehensive Comparison of AAV Purification Methods: Iodixanol Gradient Centrifugation vs. Immuno-Affinity Chromatography(Hindawi, 2023) Lam, Anh K.; Mulcrone, Patrick L.; Frabutt, Dylan; Zhang, Junping; Chrzanowski, Matthew; Arisa, Sreevani; Munoz, Maite; Li, Xin; Biswas, Moanaro; Markusic, David; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineRecombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS™ CaptureSelect™ AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both in vitro and in vivo in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.Item Cryptic resolution sites in the vector plasmid lead to the heterogeneities in the rAAV vectors(Wiley, 2023) Zhang, Junping; Chrzanowski, Matthew; Frabutt, Dylan A.; Lam, Anh K.; Mulcrone, Patrick L.; Li, Lei; Konkle, Barbara A.; Miao, Carol H.; Xiao, Weidong; Pediatrics, School of MedicineRecombinant adeno-associated virus (rAAV) vectors carry a cassette of interest retaining only the inverted terminal repeats (ITRs) from the wild-type virus. Conventional rAAV production primarily uses a vector plasmid as well as helper genes essential for AAV replication and packaging. Nevertheless, plasmid backbone related contaminants have been a major source of vector heterogeneity. The mechanism driving the contamination phenomenon has yet to be elucidated. Here we identified cryptic resolution sites in the plasmid backbone as a key source for producing snapback genomes, which leads to the increase of vector genome heterogeneity in encapsidated virions. By using a single ITR plasmid as a model molecule and mapping subgenomic particles, we found that there exist a few typical DNA break hotspots in the vector DNA plasmid backbone, for example, on the ampicillin DNA element, called aberrant rescue sites. DNA around these specific breakage sites may assume some typical secondary structures. Similar to normal AAV vectors, plasmid DNA with a single ITR was able to rescue and replicate efficiently. These subgenomic DNA species significantly compete for trans factors required for rAAV rescue, replication, and packaging. The replication of single ITR contaminants during AAV production is independent of size. Packaging of these species is greatly affected by its size. A single ITR and a cryptic resolution site in the plasmid work synergistically, likely causing a source of plasmid backbone contamination.Item Effects of Thermally Induced Configuration Changes on rAAV Genome’s Enzymatic Accessibility(Elsevier, 2020-09-11) Xu, Yinxia; Guo, Ping; Zhang, Junping; Chrzanowski, Matthew; Chew, Helen; Firrman, Jenni A.; Sang, Nianli; Diao, Yong; Xiao, Weidong; Pediatrics, School of MedicinePhysical titers for recombinant adeno-associated viral (rAAV) vectors are measured by quantifying viral genomes. It is generally perceived that AAV virions disassemble and release DNA upon thermal treatment. Here, we present data on enzymatic accessibility of rAAV genomes when AAV virions were subjected to thermal treatment. For rAAV vectors with a normal genome size (≤4.7 kb), thermal treatment at 75°C–99°C allowed only ∼10% of genomes to be detectable by quantitative real-time PCR. In contrast, greater than 70% of AAV genomes can be detected under similar conditions for AAV vectors with an oversized genome (≥5.0 kb). The permeability of virions, as measured by ethidium bromide (EB) staining, was enhanced by thermal stimulation. These results suggest that in rAAV virions with standard-sized genomes, the capsid and DNA are close enough in proximity for heat-induced “crosslinking,” which results in inaccessibility of vector DNA to enzymatic reactions. In contrast, rAAV vectors with oversized genomes release their DNA readily upon thermal treatment. These findings suggested that the spatial arrangement of capsid protein and DNA in AAV virions is genome-size dependent. These results provide a foundation for future improvement of vector assays, design, and applications.Item Subgenomic particles in rAAV vectors result from DNA lesion/break and non-homologous end joining of vector genomes(Elsevier, 2022-08-24) Zhang, Junping; Guo, Ping; Yu, Xiangping; Frabutt, Dylan A.; Lam, Anh K.; Mulcrone, Patrick L.; Chrzanowski, Matthew; Firrman, Jenni; Pouchnik, Derek; Sang, Nianli; Diao, Yong; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineRecombinant adeno-associated virus (rAAV) vectors have been developed for therapeutic treatment of genetic diseases. Current rAAV vectors administered to affected individuals often contain vector DNA-related contaminants. Here we present a thorough molecular analysis of the configuration of non-standard AAV genomes generated during rAAV production using single-molecule sequencing. In addition to the sub-vector genomic-size particles containing incomplete AAV genomes, our results showed that rAAV preparations were contaminated with multiple categories of subgenomic particles with a snapback genome (SBG) configuration or a vector genome with deletions. Through CRISPR and nuclease-based modeling in tissue culture cells, we identified that a potential mechanism leading to formation of non-canonical genome particles occurred through non-homologous end joining of fragmented vector genomes caused by genome lesions or DNA breaks present in the host cells. The results of this study advance our understanding of AAV vectors and provide new clues for improving vector efficiency and safety profiles for use in human gene therapy.Item Thorough molecular configuration analysis of noncanonical AAV genomes in AAV vector preparations(Elsevier, 2024-02-19) Zhang, Junping; Yu, Xiangping; Chrzanowski, Matthew; Tian, Jiahe; Pouchnik, Derek; Guo, Ping; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineThe unique palindromic inverted terminal repeats (ITRs) and single-stranded nature of adeno-associated virus (AAV) DNA are major hurdles to current sequencing technologies. Due to these characteristics, sequencing noncanonical AAV genomes present in AAV vector preparations remains challenging. To address this limitation, we developed thorough molecule configuration analysis of noncanonical AAV genomes (TMCA-AAV-seq). TMCA-AAV-seq takes advantage of the documented AAV packaging mechanism in which encapsidation initiates from its 3′ ITR, for AAV-seq library construction. Any AAV genome with a 3′ ITR is converted to a template suitable to adapter addition by a Bst DNA polymerase-mediated extension reaction. This extension reaction helps fix ITR heterogeneity in the AAV population and allows efficient adapter addition to even noncanonical AAV genomes. The resulting library maintains the original AAV genome configurations without introducing undesired changes. Subsequently, long-read sequencing can be performed by the Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology platform. Finally, through comprehensive data analysis, we can recover canonical, noncanonical AAV DNA, and non-AAV vector DNA sequences, along with their molecular configurations. Our method is a robust tool for profiling thorough AAV-population genomes. TMCA-AAVseq can be further extended to all parvoviruses and their derivative vectors.