- Browse by Author
Browsing by Author "Chroneos, Zissis C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item All trans-retinoic acid modulates hyperoxia-induced suppression of NF-kB-dependent Wnt signaling in alveolar A549 epithelial cells(Public Library of Science, 2022-08-10) Tsotakos, Nikolaos; Ahmed, Imtiaz; Umstead, Todd M.; Imamura, Yuka; Yau, Eric; Silveyra, Patricia; Chroneos, Zissis C.; Medicine, School of MedicineIntroduction: Despite recent advances in perinatal medicine, bronchopulmonary dysplasia (BPD) remains the most common complication of preterm birth. Inflammation, the main cause for BPD, results in arrested alveolarization. All trans-retinoic acid (ATRA), the active metabolite of Vitamin A, facilitates recovery from hyperoxia induced cell damage. The mechanisms involved in this response, and the genes activated, however, are poorly understood. In this study, we investigated the mechanisms of action of ATRA in human lung epithelial cells exposed to hyperoxia. We hypothesized that ATRA reduces hyperoxia-induced inflammatory responses in A549 alveolar epithelial cells. Methods: A549 cells were exposed to hyperoxia with or without treatment with ATRA, followed by RNA-seq analysis. Results: Transcriptomic analysis of A549 cells revealed ~2,000 differentially expressed genes with a higher than 2-fold change. Treatment of cells with ATRA alleviated some of the hyperoxia-induced changes, including Wnt signaling, cell adhesion and cytochrome P450 genes, partially through NF-κB signaling. Discussion/conclusion: Our findings support the idea that ATRA supplementation may decrease hyperoxia-induced disruption of the neonatal respiratory epithelium and alleviate development of BPD.Item STAT4 Is Largely Dispensable for Systemic Lupus Erythematosus-like Autoimmune- and Foreign Antigen-Driven Antibody-Forming Cell, Germinal Center, and Follicular Th Cell Responses(American Association of Immunologists, 2021-01-14) Fike, Adam J.; Chodisetti, Sathi Babu; Bricker, Kristen N.; Choi, Nicholas M.; Chroneos, Zissis C.; Kaplan, Mark H.; Rahman, Ziaur S. M.; Microbiology and Immunology, School of MedicineGenome-wide association studies identified variants in the transcription factor STAT4 gene and several other genes in the STAT4 signaling pathway, such as IL12A, IL12B, JAK2, and TYK2, which are associated with an increased risk of developing systemic lupus erythematosus (SLE) and other autoimmune diseases. Consistent with the genome-wide association studies data, STAT4 was shown to play an important role in autoimmune responses and autoimmunity development in SLE mouse models. Despite such important role for STAT4 in SLE development in mice and humans, little is known whether and how STAT4 may regulate extrafollicular Ab-forming cell (AFC) and follicular germinal center (GC) responses, two major pathways of autoreactive B cell development and autoantibody production. To our surprise, we found STAT4 to be largely dispensable for promoting autoimmune AFC and GC responses in various autoimmune- and SLE-prone mouse models, which strongly correlated with autoantibody production, and immune complex deposition and immune cell infiltration in the kidney. We further observed that STAT4 deficiency had no effects on AFC, GC, and Ag-specific Ab responses during protein Ag immunization or influenza virus infection. Additionally, CD4+ effector and follicular Th cell responses in autoimmune- and SLE-prone mice and protein Ag-immunized and influenza virus-infected mice were intact in the absence of STAT4. Together, our data demonstrate a largely dispensable role for STAT4 in AFC, GC, and Ab responses in SLE mouse models and in certain foreign Ag-driven responses.