ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Christodoulou, Danos C."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    An RNA-seq Protocol to Identify mRNA Expression Changes in Mouse Diaphyseal Bone: Applications in Mice with Bone Property Altering Lrp5 Mutations
    (Wiley, 2013) Ayturk, Ugur M.; Jacobsen, Christina M.; Christodoulou, Danos C.; Gorham, Joshua; Seidman, Jonathan G.; Seidman, Christine E.; Robling, Alexander G.; Warman, Matthew L.; Anatomy, Cell Biology and Physiology, School of Medicine
    Loss-of-function and certain missense mutations in the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) significantly decrease or increase bone mass, respectively. These human skeletal phenotypes have been recapitulated in mice harboring Lrp5 knockout and knock-in mutations. We hypothesized that measuring mRNA expression in diaphyseal bone from mice with Lrp5 wild-type (Lrp5(+/+) ), knockout (Lrp5(-/-) ), and high bone mass (HBM)-causing (Lrp5(p.A214V/+) ) knock-in alleles could identify genes and pathways that regulate or are regulated by LRP5 activity. We performed RNA-seq on pairs of tibial diaphyseal bones from four 16-week-old mice with each of the aforementioned genotypes. We then evaluated different methods for controlling for contaminating nonskeletal tissue (ie, blood, bone marrow, and skeletal muscle) in our data. These methods included predigestion of diaphyseal bone with collagenase and separate transcriptional profiling of blood, skeletal muscle, and bone marrow. We found that collagenase digestion reduced contamination, but also altered gene expression in the remaining cells. In contrast, in silico filtering of the diaphyseal bone RNA-seq data for highly expressed blood, skeletal muscle, and bone marrow transcripts significantly increased the correlation between RNA-seq data from an animal's right and left tibias and from animals with the same Lrp5 genotype. We conclude that reliable and reproducible RNA-seq data can be obtained from mouse diaphyseal bone and that lack of LRP5 has a more pronounced effect on gene expression than the HBM-causing LRP5 missense mutation. We identified 84 differentially expressed protein-coding transcripts between LRP5 "sufficient" (ie, Lrp5(+/+) and Lrp5(p.A214V/+) ) and "insufficient" (Lrp5(-/-) ) diaphyseal bone, and far fewer differentially expressed genes between Lrp5(p.A214V/+) and Lrp5(+/+) diaphyseal bone.
  • Loading...
    Thumbnail Image
    Item
    Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice
    (Oxford University Press, 2014-01-01) Domenighetti, Andrea A.; Chu, Pao-Hsien; Wu, Tongbin; Sheikh, Farah; Gokhin, David S.; Guo, Ling T.; Cui, Ziyou; Peter, Angela K.; Christodoulou, Danos C.; Parfenov, Michael G.; Gorham, Joshua M.; Li, Daniel Y.; Banerjee, Indroneal; Lai, Xianyin; Witzmann, Frank A.; Seidman, Christine E.; Seidman, Jonathan G.; Gomes, Aldrin V.; Shelton, G. Diane; Lieber, Richard L.; Chen, Ju; Department of Cellular & Integrative Physiology, IU School of Medicine
    Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery–Dreifuss muscular dystrophy. However, it remains to be clarified whether mutations in FHL1 cause skeletal muscle remodeling owing to gain- or loss of FHL1 function. In this study, we used FHL1-null mice lacking global FHL1 expression to evaluate loss-of-function effects on skeletal muscle homeostasis. Histological and functional analyses of soleus, tibialis anterior and sternohyoideus muscles demonstrated that FHL1-null mice develop an age-dependent myopathy associated with myofibrillar and intermyofibrillar (mitochondrial and sarcoplasmic reticulum) disorganization, impaired muscle oxidative capacity and increased autophagic activity. A longitudinal study established decreased survival rates in FHL1-null mice, associated with age-dependent impairment of muscle contractile function and a significantly lower exercise capacity. Analysis of primary myoblasts isolated from FHL1-null muscles demonstrated early muscle fiber differentiation and maturation defects, which could be rescued by re-expression of the FHL1A isoform, highlighting that FHL1A is necessary for proper muscle fiber differentiation and maturation in vitro. Overall, our data show that loss of FHL1 function leads to myopathy in vivo and suggest that loss of function of FHL1 may be one of the mechanisms underlying muscle dystrophy in patients with FHL1 mutations.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University