ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chong, Jessica X."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes
    (Elsevier, 2018-02-01) Martinelli, Simone; Krumbach, Oliver H.F.; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Bucholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G.; Larsen, Douglas; Farwell, Kelly D.; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Schiavi, Elia Di; della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A.; Chong, Jessica X.; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T.; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D.; Bamshad, Michael J.; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C.; Tartaglia, Marco; Mirzaa, Ghayda M.; Neurology, School of Medicine
    Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.
  • Loading...
    Thumbnail Image
    Item
    Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5
    (Elsevier, 2014-05-01) McMillin, Margaret J.; Beck, Anita E.; Chong, Jessica X.; Shively, Kathryn M.; Buckingham, Kati J.; Gildersleeve, Heidi I.S.; Aracena, Mariana I.; Aylsworth, Arthur S.; Bitoun, Pierre; Carey, John C.; Clericuzio, Carol L.; Crow, Yanick J.; Curry, Cynthia J.; Devriendt, Koenraad; Everman, David B.; Fryer, Alan; Gibson, Kate; Uzielli, Maria Luisa Giovannucci; Graham, John M. Jr.; Hall, Judith G.; Hecht, Jacqueline T.; Heidenreich, Randall A.; Hurst, Jane A.; Irani, Sarosh; Krapels, Ingrid P.C.; Leroy, Jules G.; Mowat, David; Plant, Gordon T.; Robertson, Stephen P.; Schorry, Elizabeth K.; Scott, Richard H.; Seaver, Laurie H.; Sherr, Elliott; Splitt, Miranda; Stewart, Helen; Stumpel, Constance; Temel, Sehime G.; Weaver, David D.; Whiteford, Margo; Williams, Marc S.; Tabor, Holly K.; Smith, Joshua D.; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.; Medical & Molecular Genetics, School of Medicine
    Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal-dominant disorder characterized by cleft palate and congenital contractures of the hands and feet. Exome sequencing of five GS-affected families identified mutations in piezo-type mechanosensitive ion channel component 2 (PIEZO2) in each family. Sanger sequencing revealed PIEZO2 mutations in five of seven additional families studied (for a total of 10/12 [83%] individuals), and nine families had an identical c.8057G>A (p.Arg2686His) mutation. The phenotype of GS overlaps with distal arthrogryposis type 5 (DA5) and Marden-Walker syndrome (MWS). Using molecular inversion probes for targeted sequencing to screen PIEZO2, we found mutations in 24/29 (82%) DA5-affected families and one of two MWS-affected families. The presence of cleft palate was significantly associated with c.8057G>A (Fisher’s exact test, adjusted p value < 0.0001). Collectively, although GS, DA5, and MWS have traditionally been considered separate disorders, our findings indicate that they are etiologically related and perhaps represent variable expressivity of the same condition.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University