- Browse by Author
Browsing by Author "Choi, Mi-Ran"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse(Springer, 2012) Choi, Mi-Ran; Bardhan, Rizia; Stanton-Maxey, Katie J.; Badve, Sunil; Nakshatri, Harikrishna; Stantz, Keith M.; Cao, Ning; Halas, Naomi J.; Clare, Susan E.As systemic cancer therapies improve and are able to control metastatic disease outside the central nervous system, the brain is increasingly the first site of relapse. The blood–brain barrier (BBB) represents a major challenge to the delivery of therapeutics to the brain. Macrophages originating from circulating monocytes are able to infiltrate brain metastases while the BBB is intact. Here, we show that this ability can be exploited to deliver both diagnostic and therapeutic nanoparticles specifically to experimental brain metastases of breast cancer.Item Human β-galactoside α-2,3-sialyltransferase (ST3Gal III) attenuated Taxol-induced apoptosis in ovarian cancer cells by downregulating caspase-8 activity(Springer US, 2009-11) Huang, Su; Day, Travis W.; Choi, Mi-Ran; Safa, Ahmad R.; Department of Pharmacology & Toxicology, School of MedicineTaxol triggers apoptosis in a variety of cancer cells, but it also upregulates cytoprotective proteins and/or pathways that compromise its therapeutic efficacy. In this report, we found that Taxol treatment resulted in caspase-8-dependent apoptosis in SKOV3 human ovarian cancer cells. Moreover, Taxol-induced apoptosis was associated with caspase-3 activation. Interestingly, Taxol treatment upregulated α-2,3-sialyltransferase (ST3Gal III) expression and forced expression of ST3Gal III attenuated Taxol-induced apoptosis. Furthermore, ST3Gal III overexpression inhibited Taxol-ttiggered caspase-8 activation, indicating that ST3Gal III upregulation produces cellular resistance to Taxol and hence reduces the efficacy of Taxol therapy.